
Group Testing
– Enhancing the analyses of gene expression data –

Adrian Alexa

alexa@mpi-inf.mpg.de

Computational Biology and Applied Algorithmics

Max Planck Institute for Informatics

D-66123 Saarbrücken

Group Seminar, Saarbruecken, 11th of January, 2007



Overview

➽ Motivation

➽ Testing gene sets

• Tests based on counts: Fisher’s exact test [Khatri and Draghici, 2005]

• Comparing two-sample distributions: KS test, t-test [Subramanian, A., et al., 2005]

and [Efron and Tibshirani, 2006]

• Category analysis: GlobalTest, Category [Goeman, J. J., et al., 2004] and

[Jiang and Gentleman, 2007]

➽ Gene Ontology issues

• Accounting for groups dependencies

• Assessing the performance of different tests

• Simulation scenario and results

➽ GO, time series and dimension reduction (preview)

• Can GO be used for dimension reduction?

• Time Series data
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Biological questions

➢ Question 1: Find genes correlated with a given phenotype.

• Standard approach is to treat genes independently (gene-wise differential expression)

• High score genes are further investigated for underlying biology.

• Problem: Noisy expression data can induce large number of candidate genes (differentially

expressed genes), out of which only few are biologically interesting.
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Biological questions

➢ Question 1: Find genes correlated with a given phenotype.

• Standard approach is to treat genes independently (gene-wise differential expression)

• High score genes are further investigated for underlying biology.

• Problem: Noisy expression data can induce large number of candidate genes (differentially

expressed genes), out of which only few are biologically interesting.

➢ Question 2: Find groups of genes correlated with a given phenotype.

• More biological knowledge is added using predefined groups of genes: GO, KEGG,

Transpath, etc.

• Gene set enrichment: gene-wise analysis followed by enrichment analysis of the gene sets.

• Holistic approach: differentially expressed gene sets.
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Biological questions

➢ Main idea:

• If you look for candidate genes correlated with a given phenotype it is better to look for

interesting gene groups first.

• Grouping the genes into biological predefined clusters can be seen as a filtering: genes

from the same group share the same biology.

➢ Analysis steps:

1. Derive score for genes (p-value, t-statistic, even gene expression value itself).

2. Map genes to biological groups and compute significance of these groups using a suitable

test statistic.

3. Screen the significant biological groups for candidate genes.
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Biological questions

➢ Main idea:

• If you look for candidate genes correlated with a given phenotype it is better to look for

interesting gene groups first.

• Grouping the genes into biological predefined clusters can be seen as a filtering: genes

from the same group share the same biology.

➢ Analysis steps:

1. Derive score for genes (p-value, t-statistic, even gene expression value itself).

2. Map genes to biological groups and compute significance of these groups using a suitable

test statistic.

3. Screen the significant biological groups for candidate genes.

➢ Advantages:

• Easier to find biologically related genes sharing the same pattern.

• Fewer groups to be investigated for differential expression than individual genes.

• Easier to find genes with sensible small change in expression.
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Example

➽ Analysis of synergistic effect between hypomethylation and changes on chromosome 8 for

prostate cancer patients (23 patients).

➽ Statistical model:

log(geneExpr) = α0 + α1Ihypo + α2Ichorm8 + α3IhypoIchrom8 + ǫ

➽ Test for interaction effect:

H0 : α3 = 0 vs H1 : α3 6= 0

➽ Distribution of p-values
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Example

• Interpretation of high ranking GO groups.

• New candidate genes found by screening the

high rank GO groups. These genes are hard

to find by analysing the list of differentially ex-

pressed genes!

• Wolfang A. Schulz, Adrian Alexa, Volker Jung,

Christiane Hader, Michele J. Hoffmann, Masanori

Yamanaka, Sandy Fritzsche, Agnes Wlazlinski,

Mirko Müller, Thomas Lengauer, Rainer Engers,

Andrea R. Florl, Bernd Wullich, Jörg Rahnenführer:

Factor interaction analysis for chromosome 8

and DNA methylation alterations highlights in-

nate immune response suppression and cy-

toskeletal changes in prostate cancer ,

Molecular Cancer, to be accepted.
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Overview

➽ Motivation

➽ Testing gene sets

• Tests based on counts: Fisher’s exact test [Khatri and Draghici, 2005]

• Comparing two-sample distributions: KS test, t-test [Subramanian, A., et al., 2005]

and [Efron and Tibshirani, 2006]

• Category analysis: GlobalTest, Category [Goeman, J. J., et al., 2004] and

[Jiang and Gentleman, 2007]

➽ Gene Ontology issues

➽ GO, time series and dimension reduction (preview)
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Gene sets enrichment

➢ Group enrichment : given a gene group with some biological function, analyse the positions of

these genes in the ordered list . The gene group is relevant, if all genes are among the top

genes in the ordered list .

➢ Idea: Sort genes according to some score (diff. expression) and investigate the ranks of the

members of group A (the biological function) in this list.

➢ Define cutoff and count members of group A below and above cutoff. Basically, one wants to

compare the following ratios:
K

N
≤ x

M
.

N (gene on the microarray) M (genes in group)

K N-K x-Mx
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Fisher’s exact test

For computing the significance of a gene set, we

can use a hypergeometric test:

• N genes are on microarray

• Bio is a GO term

– M genes ∈ Bio

– N − M genes /∈ Bio

• Let K be the no. of significant genes

• What is the probability of having exactly x

genes from K of type Bio ?

P (X = x|N, M, K) =

`

M

x

´`

N−M

K−x

´

`

N

K

´ .

• This is the probability of getting exactly x by

chance (not what we want)

p = 1 −

x−1
X

i=0

`

M

x

´`

N−M

K−x

´

`

N

K

´ .

(also called Fisher’s exact test)

N (gene on the microarray) M (genes in group)

K N-K x-Mx
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Fisher’s exact test

For computing the significance of a gene set, we

can use a hypergeometric test:

• N genes are on microarray

• Bio is a GO term

– M genes ∈ Bio

– N − M genes /∈ Bio

• Let K be the no. of significant genes

• What is the probability of having exactly x

genes from K of type Bio ?

P (X = x|N, M, K) =

`

M

x

´`

N−M

K−x

´

`

N

K

´ .

• This is the probability of getting exactly x by

chance (not what we want)

p = 1 −

x−1
X

i=0

`

M

x

´`

N−M

K−x

´

`

N

K

´ .

(also called Fisher’s exact test)

➢ Depends on p-value adjustment procedure. No clear way to define K .

➢ Since genes are divided into two disjoints sets (differentially and non-differentially expressed

genes) small but consistent differential expression is not accounted for.
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Category analysis

➢ Generalize the concept of differentially expressed gene to differentially expressed groups.

➢ Enrichment analysis using count statistics can not capture gene expression patterns for a gene

group.

➢ Gentleman’s category and Goeman’s global test aggregates per gene statistics/gene

expression within a gene group.

➢ The idea behind is that small but coordinate changes in gene expression are relevant for

phenotypic differences.
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Category analysis

➢ Generalize the concept of differentially expressed gene to differentially expressed groups.

➢ Enrichment analysis using count statistics can not capture gene expression patterns for a gene

group.

➢ Gentleman’s category and Goeman’s global test aggregates per gene statistics/gene

expression within a gene group.

➢ The idea behind is that small but coordinate changes in gene expression are relevant for

phenotypic differences.

• The association between genes and the gene

groups can be seen as an incidence matrix A.

• The numbers of genes in each category is given by

the row sums.

• The number of groups a gene belongs to is given

by the column sums.

A =

0

B

B

B

@

a11 a12 · · · a1B

.

.

.
.
.
.

aK1 aK2 · · · aKB

1

C

C

C

A

aij =

8

<

:

1, if gj ∈ GOi

0, if gj /∈ GOi.
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Gentleman’s Category

➢ The correlation between the phenotype and the genes is summarised in a vector Z:

Z = (z1, z2, . . . , zb).

zi is the gene-wise statistic for gene i, for example t-statistic between two groups.

➢ The gene set statistics are defined by:

X = A·Z√
row sum(A)

, or more generally: X = f(A,Z).

f can be defined as: mean, median, sign of the test, etc.
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Gentleman’s Category

➢ The correlation between the phenotype and the genes is summarised in a vector Z:

Z = (z1, z2, . . . , zb).

zi is the gene-wise statistic for gene i, for example t-statistic between two groups.

➢ The gene set statistics are defined by:

X = A·Z√
row sum(A)

, or more generally: X = f(A,Z).

f can be defined as: mean, median, sign of the test, etc.

➢ When t-statistic is used for Z, then X ∼ N(0, 1) (standardised sum of normals). This usually

holds when the number of samples is large and the summands are independent!

➢ Otherwise, permutation test can be used for assessing the significance of the statistic.

• Permuting genes: is the test statistic for given group unusual?

• Permuting samples: is the group statistic unusual w.r.t. the entire expression?
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Goeman’s Global test

➢ The main idea: Compare correlation structure of members of investigated group with

correlation structure of phenotype values:

H0 : P (Y = 1|X) = P (Y = 2|X).
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Goeman’s Global test

➢ The main idea: Compare correlation structure of members of investigated group with

correlation structure of phenotype values:

H0 : P (Y = 1|X) = P (Y = 2|X).

➢ Test Statistic:

Q ∼ (Y − µ)T R(Y − µ)

∼
X

g

h

XT
g (Y − µ)

i2

∼
X

i

X

j

Rij(Yi − µ)(Yj − µ)

• Y is the phenotype vector.

• R ∼ XXT is the covariance matrix of the

gene expression data of members of G.

• The first sum is taken over genes, the sec-

ond over samples

➢ Two interpretations of test statistic Q:

• Average covariance of expression vector of members of G and phenotype values.

• Quantification of how much covariance structure between expression data resembles

covariance structure between phenotype values.
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Testing equality of two distributions

➢ Fisher’s exact test is not optimal due to the loss of information. Genes are partitioned into two

sets and the information embedded in the genes below the cutoff is not used. Also the position

of the genes is not considered with Fisher’s exact test.

➢ Category analysis accounts only for the gene expression pattern inside the group. Larger

groups inherently contain a larger amount of differential expression.
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Testing equality of two distributions

➢ Fisher’s exact test is not optimal due to the loss of information. Genes are partitioned into two

sets and the information embedded in the genes below the cutoff is not used. Also the position

of the genes is not considered with Fisher’s exact test.

➢ Category analysis accounts only for the gene expression pattern inside the group. Larger

groups inherently contain a larger amount of differential expression.

➢ What we want is to compare the distribution of a gene set, group A, with the distribution of all

other genes present on the array, group B.
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Testing equality of two distributions
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➢ Genes are ordered with respect to a measure that quantifies the expression differences in the phenotype.

➢ A running-sum statistic is computed: If the next gene belongs to group a, add nb to the current sum. If

not, subtract na from the sum. The total sum is always 0.

➢ Group a is found significant if a high value of the maximal deviation from 0 is obtained. This is a two sided

test.

➢ The significance of running-sum statistic is computed by randomly permuting genes (under the null

hypothesis that the genes are uniformly mixed between groups).
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The null hypothesis

• The asymptotic distribution

agrees with the one of per-

muting genes (KS test).

• Permuting samples gives a

different null distribution than

permuting genes.

• Permutation of samples can

be done when sufficient ar-

rays are available (in this

case 128).

• Bootstrapping can be used

as an alternative to permut-

ing samples.
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Shift in distribution
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t-test

Gene expression
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➢ If we are interested in a distribution shift, then a simple t-test can be used between groups A and B:

H0 : µA = µB versus H1 : µA 6= µB,

where the test statistic is defined by:

T =
µA − µB

σ̂
.

➢ σ̂ is an estimate of the variance. Usually a t-test with equal variance for the two samples gives better

results.

➢ Problems: not proportional sample sizes: group A ∼ 10 genes vs. group B ∼ 10000!

Adrian Alexa Saarbruecken, January 11, 2007 –17–



Group test - Wrap up

➢ Each test answers a different question!

➢ Category based tests analyse only the distribution inside the group. This can be an artifact of

the whole experiment (each group is differentially expressed).

➢ Generalisation: Group testing can be seen as comparing two multi-dimensional densities.

• Genes are k-dimensional vectors (k is the number of samples).

• Group A contains nA genes belonging to a biological group (GO term).

• Group B contains all the other genes from the array.

• Test statistic to compare the multivariate distributions of group A, respectively group B:

H0 : FA = FB vs. H1 : FA 6= FB .

➢ Considering genes as k-dim. vectors can avoid the problems with the two stage approach. First

compute a gene-wise statistic (t-statistic) an then perform a group test.
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Overview

➽ Motivation

➽ Testing gene sets

➽ Gene Ontology issues

• Accounting for groups dependencies

• Assessing the performance of different tests

• Simulation scenario and results

➽ GO, time series and dimension reduction (preview)
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GO scoring: general problem

Given:

• a directed acyclic graph (GO graph) and a set of items (genes) s.t.:

– each node in the graph contains some genes

– the parent of a node contains all the genes of its child

– a node can contain genes that are not found in the children

• a subset of genes that we call significant genes (differentially expressed genes)

Goal:

• find the nodes from the graph (biological functions) that best represent the sig-

nificant genes w.r.t some scoring function (some test statistic)
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The classic method
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significant, light yellow is the least significant from the graph
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The classic method
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The elim method

• Nodes are processed bottom-up in

the GO graph.

• It iteratively removes the genes

annotated to significant GO terms

from more general GO terms.

• Intuitive and simple to interpret.
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The weight method

• The genes obtain weights that denote

the gene relevance in the significant

nodes.

• To decide if a GO term u better repre-

sents the interesting genes, the enrich-

ment score of node u is compared with

the scores of its children.

• Children with a better score than u bet-

ter represent the interesting genes; their

significance is increased

• Children with a lower score than u have

their significance reduced.
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Evaluation on simulated data

➢ We use the GO graph structure (∼ 3000 nodes), and all the genes from HGU95aV2 Affymetrix

chip (∼ 10000 mapped to the GO graph)

➢ Select only the nodes that have the number of mapped genes in some range (10 . . . 100)

➢ Choose randomly a number of nodes (50 in our case) from the selected nodes. These nodes

represent the enriched nodes (interesting nodes).

➢ Set as significant genes all the genes from the enriched nodes.

➢ Some noise is introduced:

• Pick 10% from all significant genes

• Remove them from the significant list

• Replace the genes that we removed with other genes
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Evaluation on simulated data

➢ We use the GO graph structure (∼ 3000 nodes), and all the genes from HGU95aV2 Affymetrix

chip (∼ 10000 mapped to the GO graph)

➢ Select only the nodes that have the number of mapped genes in some range (10 . . . 100)

➢ Choose randomly a number of nodes (50 in our case) from the selected nodes. These nodes

represent the enriched nodes (interesting nodes).

➢ Set as significant genes all the genes from the enriched nodes.

➢ Some noise is introduced:

• Pick 10% from all significant genes

• Remove them from the significant list

• Replace the genes that we removed with other genes

➢ The goal is to recover as best as possible the enriched nodes.
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Simulated dataset
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Simulated dataset
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Simulated dataset

➢ Scenario 2: use of real data sets.

• Issue with first scenario: no measure for differential expression is assigned to genes. Thus, only test

based on counts can be applied.

• Define gene group A as the group containing all genes annotated to the enriched nodes.

• Sort all genes from the array w.r.t. the correlation with a given phenotype.

• Permute the gene labels such that group A contains the top differentially expressed genes.
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Simulated dataset

➢ Scenario 2: use of real data sets.

• Issue with first scenario: no measure for differential expression is assigned to genes. Thus, only test

based on counts can be applied.

• Define gene group A as the group containing all genes annotated to the enriched nodes.

• Sort all genes from the array w.r.t. the correlation with a given phenotype.

• Permute the gene labels such that group A contains the top differentially expressed genes.

➢ Scenario 3: use of real data sets and conserving the correlation structure between the genes.

• Select of some GO nodes as enriched nodes.

• Define gene group A as the group containing all genes annotated to the enriched nodes.

• Set a group test procedure as a reference test, for example KS-test or Global test.

• Permute the phenotype and for each permutation apply the test statistic to group A.

• The final dataset is the one with the most extreme test.
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Quality of GO scoring methods
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Quality of GO scoring methods
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Quality of GO scoring methods
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Overview

➽ Motivation

➽ Testing gene sets

➽ Gene Ontology issues

➽ GO, time series and dimension reduction (preview)

• Can GO be used for dimension reduction?

• Time Series data
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Dimension reduction

➢ Since there are so many group testing procedures available and some are based on gene

scores one can think of using GO for dimension reduction.

➢ Main idea : For each array first map genes to GO groups and perform enrichment analysis on

the obtained GO groups. If the raw expression value is used, then high scoring GOs can be

thought as groups accumulating high gene expression.

➢ This can be seen as a dimension reduction: from ∼ 40.000 genes to ∼ 2.000 GO groups.

➢ The issue is which measure is best (Category can be better than KS or t-test).

KS test (row)
GO ID 4h C 4h 12h 24h 48h 48h C

GO:0050874 1 1 1 1 1 1
GO:0006952 2 2 2 2 2 2
GO:0006955 3 3 4 3 3 3
GO:0007186 4 5 3 5 5 5
GO:0009607 5 4 5 4 4 4
GO:0007154 6 6 6 7 7 6
GO:0007275 7 8 7 9 9 7
GO:0007267 8 7 9 6 6 8
GO:0007166 9 9 8 8 8 9
GO:0050877 10 11 11 10 10 10

t-test (row)
GO ID 4h C 4h 12h 24h 48h 48h C

GO:0050874 1 3 1 7 2 2
GO:0007154 2 4 5 8 4 3
GO:0007186 3 5 7 9 3 4
GO:0007166 4 6 6 11 5 5
GO:0006952 5 7 9 10 6 6
GO:0007275 6 9 10 15 9 7
GO:0007165 7 8 8 14 11 9
GO:0006955 8 10 12 12 7 8
GO:0009607 9 11 11 13 8 10
GO:0007267 10 12 13 16 10 11

KS-test (ti+1 − ti)
GO ID 4h-4h C 12h-4h 24h-12h 48h-24h 48h C-48h

GO:0050874 1 3269 1 1873 1869
GO:0006952 2 3309 2 2413 1421
GO:0009607 3 3306 4 2393 1699
GO:0006955 4 3322 3 2568 1334
GO:0007154 5 3390 7 3254 85
GO:0007166 6 3395 9 2513 433
GO:0007186 7 3396 5 1938 1317
GO:0007165 8 3391 12 3332 65
GO:0007275 9 3281 6 2992 193
GO:0050896 10 2266 10 2459 2438
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Time series profiling
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