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Abstract

The analysis of gene expression data is an important tool for understanding mechanisms
of living systems. Microarray experiments provide large amounts of data, but it is difficult
to understand biological processes or molecular functions from such data on their own.

Clustering methods based on expression data have been used to deal with this problem,
but the biological relevance of the results is limited. New methods have been proposed in
which annotations from the Gene Ontology (GO) database are integrated into the analysis
in order to gain biological understanding. Gene classes obtained from GO are scored with
respect to their significance in datasets from microarray experiments.

Current methods of this type do not incorporate the structure of the GO database when
computing statistical quantities. In this thesis we developed methods that make use of this
topology in order to improve the biological insight obtained from gene expression.

By ignoring the structure of the GO, the current methods do not account for the strong
dependences between the GO terms. Four algorithms with different levels of complexity for
decorrelating the GO terms are proposed. The algorithms are systematically evaluated on a
real microarray dataset and on simulated data. The results obtained for both datasets show
that our methods improve the inference.

Beside method development we also focus on the visualization of the results. More insight
on the biological functions dependences can be obtained by inspecting how the significant
GO terms are distributed in the GO graph.



I hereby declare that this thesis is entirely my own work except where otherwise indicated.
I have used only the resources given in the list of references.

Adrian Alexa
March, 2005



Acknowledgements

First of all, I would like to acknowledge my supervisors Jorg Rahnenfiihrer and
Thomas Lengauer.

Jorg had an admirable patience, he never seemed to lose confidence in me, al-
though I was not a perfect student, many times couldn’t met my deadlines. We got
many times involved into hours of discussions, out of which I always got some new
ideas and energy for my work. He shared his experience with me, teaching me some
of the research rules.

I am particularly thankful to Prof. Lengauer for introducing me to the field of
Bioinformatics and for giving me the chance to make my master thesis in his research
group.

I want to thank all members of AG3 group, for creating a very nice working
environment. I had fruitful discussions with Tobias Sing, Oliver Sander, and Jochen
Maydt on issues related to the R programming language, speeding up the process
of my work. Besides working, we also spent some nice time together. Particularly,
Andreas Steffan is guilty for showing me how wonderful the world of Jazz music is.
A big thanks to all of you guys that helped me recover from my accident. Thanks
for being there and supporting me through those difficult moments.

I would also like to thank the International Max Planck Research School for
offering me a fellowship for my master studies. A special thanks to Kerstin Meyer
Ross, the IMPRS coordinator, for her support.

Last but not least I would like to thank Georgiana Ifrim for helping me in writing
down the thesis and for her continuous support.

ii



Contents

R.1 Geneexpressiondatd . . . . . ...
.11 DNA ggu_es_amj_ggu_e_ﬂpmssmﬂ .....................
R.1.2 Microarrayd . . . . .
.13 Anpalysisof GED . . . . o ot

B.2  Hypothesis testiné .................................

21 Statistical testd . . . . ...

iii



Implementation and experimentsd

5.1 The ALL datasell . . . . . . . oo oo
5.2  Tmplem entatioq ...................................

.21 Visnalizing graphd . . . . ...
gthe algorithms on the ALL dataset

5.3 Comparin

531  Setup 1: Comparison of B-cell ALL and T-cell ALLl . . . ... . ...

[5.3.2  Setup 2: Comparison within B-cell ALI . . . . . . . .. . .. .. ...

v

39
39
41
42
45
45
99

72
72
75

85
85
86

88



List of Figures

5.3 Example of apieplofl . . . . . . . ..,
I5.4  The distribution of p-values for two different testd . . . . .. . . .. . ...
I5.5  Setupl: The indiced subgraphs for method classicd . . . . . . . .. .. ...

.7 Setupl: The induced Subgranhs for method tooﬁ ...............

I5.8  Setupl: The indiced subgraphs for method elimd . . . . . . . ... ... ..
5.9 Setupl: The indiced Subgranhs for method readjusd . . . . . .. ... ...

[5.10 Setupl: The induced subgraphs for method weigh_tﬂh_sj_gﬂa_ﬂ_og&ea_k_(_’ R

[5.11 Setupl: The induced subgraphs for method weight with sigRatiol [ | I
[5.12 Setupl: The induced subgraphs for method Welﬁlijt with sigRatio I .....
l5.13 Setupl: The induced subgraphs for method allM . . . . . . ... ... ...
[5.14 Setnp2: The lower induced subgraph for the first 8 GO terms) . . ... ...
l5.15 Setup2: The induced subgraphs for method classic !
[5.16 Setup2: The induced subgraphs for method classicd .. ... .. ... ...

H.18 Setup?2: The induced qubgmnhq for method readiusﬂ

15,19 Setun2: The indiced qubgranhq for method Welgh_tmh_ﬂgRatloL( )

5.20 Setup?2: The induced subgraphs for method Welﬁ_tm_h_ng&md .....
5.21 Setup?2: The induced subgraphs for method allM . . . . . . . .. ... ...

5,22 [he s]]bgranhs induced by the wanted nodes in a simulation setup] . . . . .

0 1 Tp

\)

0w O S ot ot



vi



List of Tables

.1 Numerical expression data matrix) . . . . . . . . .. 13

Iz,ulo_u_ﬁ_ugen(’v tabld . ... 14
hﬁ_(hmm_sl;amsﬁf_the_(}d ............................. 19

W1  Ttems contineencv tabld . . . . . . .. ..., 29

n.2 Setup 1. The number of Sigm;ﬁgam_GQtﬂms_ﬂ)r_(ﬁﬂQrﬁmMs_of_tthﬂ . 46
5.3 Setup 1: Some statistics for the siguj_ﬁ_c,a.n_t_(}&tgmﬂ .............. 46
5.4 Setup 1: The correlation between the resulted p-values] . . . . ... ... .. 47
5.5 Setup 1: Rank carrelation for a sample of signj_ﬁ_(;a,m;_G_Q_tmmsJ ........ 48
5.6 Setup 1: The p-values for the three different Weigh_tj_ng_ﬁmgthnd ....... 49
5.7 _Setup 1: The number of Signj;ﬁ_galmﬁﬂ_tmms_fm;djﬂmm_mmﬂs] ...... 49
l5.8 Setup 1: Rank carrelation for different weightine functions| . . . ... ... . 50

5.9 Setup 2: The Siguiﬁ_canwm_e_tmé ........................ 59
[5.10 Setup 2: Some statistics for the Signj_ﬁ_ga.mi}ﬂ_tmmd .............. 59
l5.11 Setup 2: The number of qignjﬁgaxﬁﬁﬂ_tmms_@dﬁmﬁjmﬂuﬁhﬂgsﬂ . 59
5,12 Setup 2: The raw p-values of the first 9 GO termd . . . . . ... .......

H.13 Setup 2: The number of qlMﬂmsﬁm;hﬂﬂmi@mﬁstamm 60
l5.14 Setup 2: Rank carrelation for a sample of qlgm_ﬁ_ca.n.t_G_Q_mesJ ........

[5.15 Setup 2: Rank carrelation for different Welgh_tm_g_ﬁm_gtjgns_] .......... 61
516 Resnlts of one run on simulated data with 50 wanted noded . . . . . . . . .. 75
5.17_The Dervenfﬂgf_ohﬁmw_nmles_ﬁnmd_mmnmmmmm 76
.18 Average nervenfagmﬁmnmd_nadﬂs_ﬂnmd_mm;mﬂ_nmumhﬂmm_mdﬁé 76
519 Average results over 100 runs on simulated data with 50 wanted nodes . 7
15.20 Average nerventagmﬁmnmdmadﬂs_ﬂnmd_mﬂ;mﬂ_nmummmmd_mldﬁé 7

WMMWMM&EMMMﬂ 7
15.22 Results of one run on simulated data with 15 wanted noded . . . . . . . . .. 78

vii



List of Algorithms

i3 readjust algmj_th_tﬂ .................................
U weight algorithm (part TY. . . . .

viii



The formalists are like a watchmaker who is ab-
sorbed in making his watches look pretty that he
has forgotten their purpose of telling the time, and
has therefore omitted to insert any works.

“Principles of Mathematics”
Bertrand Russell
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Chapter 1

Introduction

Microarray technology gives us the possibility of measuring the abundance of mRNA expres-
sion for thousands of genes simultaneously. The challenge is to understand the biological
processes or molecular functions from the large amount of data generated by these high-
throughput experiments.

1.1 Problem statement

The result of a microarray experiment is a long list of genes together with the expression
profiles that show the gene activity under particular conditions or at specific time points.
This data is the starting point for an investigation of the underlying biology.

In typical studies the genes are analyzed one by one. One such study is to divide the
samples into two groups like disease and healthy, and then to rank the genes according to
the differential expression. When the expression profiles measure the activity of the gene at
specific time points, genes can be sorted according to the correlation of the expression values
with a phenotype measurement. For both studies the result is an ordered list of genes. The
task for the researcher is to infer the underlying biology from the ordered list of genes.

In many cases the ordered list of genes is not sufficient and more biological knowledge
needs to be included for a rigorous analysis. Grouping the genes based on their regula-
tory regions was one of the first steps in this direction. With the development of biological
knowledge databases more information is available to augment the gene expression data. Bi-
ologically interesting sets of genes, genes that belong to a pathway or genes that are known to
have the same biological function can now be compiled. Given the sets of genes representing
some biological function the task is to find the relevant biological functions for the underling
experiment. Gene set enrichment methods analyze the positions of members of a biological
function in the ordered list of genes. The biological function is more important if its members
are among the top genes in the ordered list.

New methods have been proposed in which annotations from the Gene Ontology (GO)
database are integrated into the analysis. Gene sets obtained from GO are scored indepen-
dently one of each other using different test statistics.
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1.2 Motivation: What we need to improve

Current methods that test the enrichment of GO terms do not fully use the knowledge
encapsulated in the hierarchical structure of the GO database. The complicated structure of
the GO introduces strong dependences between the GO terms.

The statistical interpretation of the results obtained from such methods is unclear due to
these dependences. Even when using multiple testing correction procedures the results are
biased by the correlation between the GO terms. We believe that by de-correlating the GO
terms the interpretation of the results can be improved and new insights can be obtained.
Analyzing the GO graph structures, the local dependences between the GO terms can be
identified and removed. In this thesis we discuss some strategies to achieve this goal.

Before going further we reformulate the problem in a more general framework. Figure [Tl
presents the problem that we want to solve.

Given:

e a directed acyclic graph (GO) and a set of items (genes) s.t.:
1. each node in the graph contains some items
2. the parent of a node contains all the items of its child

3. a node can contain items that are not found in the children

e a subset of items that we call significant items (differentially ex-
pressed genes)

Goal:

e find the nodes from the graph (biological functions) that best rep-
resent the significant items w.r.t. some scoring function (some test
statistic)

Figure 1.1: Statement of the general problem

Another important tool in such an analysis is the visualization of the results. By inspect-
ing subgraphs that are in some way significant for the experiment under study, the researcher
can gather more insights on the underlying biology. Good visualization tools of the GO graph
are needed in this direction.

1.3 Outline
The thesis is structured as follows:

Chapter focuses on the general concepts that we will use in this thesis. We organize it in
three sections.
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Chapter

Chapterd

Chapter

Chapter @

Gene expression data gives the necessary background in this area, emphasizing
the main goals of the analysis and discussing what have been achieved so far
and where is need for improvement.

Hypothesis testing briefly gives the mathematical background in hypothesis test-
ing theory in the first part. Then, in the second part we demonstrate the im-
portance of this theory for analyzing gene expression data.

Ontologies introduce the reader into the basics of ontologies and their use, espe-
cially in biology. A detailed description is given for the Gene Ontology.

presents some of the current solutions to the problem of scoring the enrichment
of members of a gene set. Some remarks are made on the drawbacks of these
methods.

introduces our ideas on how the hierarchical structure of the GO graph should
be integrated in scoring gene sets. Four algorithms with different levels of com-
plexity are proposed.

gives few implementation details necessary for better understanding the exper-
imental results. The ALL dataset on which we evaluate our methods is intro-
duced.

We emphasize visualization issues, and the discussion of the results is also based
on the visual inspection of the GO graph. For the experimental part we also give
the results obtained by running the algorithms with simulated data. We dis-
cuss advantages and disadvantages of the algorithms based on the experimental
results.

is summarizing all ideas presented and our contribution in this thesis. Briefly,
future directions are discussed.



Chapter 2

Technical basis

In this chapter we introduce some concepts that are relevant for the rest of this thesis. We
start by introducing the biology necessary for understanding the content of this thesis, ways to
obtain the necessary data using microarray experiments and the methods used for analyzing
this data.

Then we give the mathematical background for hypothesis testing showing how and where
this mathematical tool is used in gene expression data analysis. Briefly we point out the basis
of multiple testing.

In the last section, we briefly introduce the basics of ontologies. Having these basics
we describe Gene Ontology - what it is, how it is structured, how genes and gene products
can be associated with ontology terms and how we can use this ontology in analyzing gene
expression data.

2.1 Gene expression data

To understand the notion of gene expression and the source of the data that we want to an-
alyze, we present some molecular biology basics, following a more extensive, general treatment
(Setubal and Meidanis, 1997 Speed, 2003; [Tobler, 2002; [Dubitzky et al., 2003} [Brown and Botstein, 19¢

2.1.1 DNA, genes and gene expression

DNA. Each cell from an organism contains some very long molecules of DNA (deoxyri-
bonucleic acid) called chromosomes. For us, DNA is a one dimensional molecule composed
of two complementary strands that are coiled around each other as a double helix. Each
strand can be seen as a string containing only four letters: A, G, C and T (these are the
basis that constitute the DNA backbone: Adenine, Guanine, Cytosine and Thymine). The
two strands contain complementary base sequences: A is the complement of T, and G is the
complement of C. When two complementary bases (or sequences) are near one another they
will form hydrogen bonds.

Genes. A gene is a contiguous stretch of variable length of DNA. Genes are important
because they encode the information for synthesizing proteins. Proteins perform a variety of
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specialized functions in the cell. They are important in terms of biological function and one
of the goals in biological science is to understand their structure and function.
Figure 211 gives a schematic view of the structure of a gene.

Regulatory region

P - Pre-mRNA N
Enhancer —bromoter = "
—_—
D A D A_D D
: I : : I El - - -
, intron intron intron intron 3
5 T T P T
Start of ATG Internal exon  Stop Poly-A signal

Picture by Solovyev, V

Figure 2.1: Schematic representation of an eukaryotic gene

Central dogma of molecular genetics. We are interested is the mechanism that trans-
forms the information stored in a gene into a protein. This transformation is known as the
central dogma of molecular biology and is shown in Figure

Transcription
gene P > Translation

(DNA) < mRNA

> protein

Reverse Transcription
Figure 2.2: Central dogma of molecular biology

In short, the information from a particular gene is transferred from a strand of DNA into
an intermediate molecule called mRNA (messenger ribonucleic acid) using part of a DNA
strand as a template. This process is known as transcription. Thereafter the information
contained in the mRNA is used to assemble proteins. This second step is known as translation.

Gene expression. The overall process consisting of transcription and thereafter translation
is called gene expression. Thus, we can say that gene expression is the activity of a gene in
a cell at a certain time stamp.

Gene expression is important for several reasons. First, knowing which proteins are being
produced in a cell can help us distinguish between different tissues. Second, if we can measure
which or how many genes are expressed in a cell at different time points, or different stress
conditions, then comparing these measurements can tell us if a cell is healthy or not. Finding
out the type of tumor of a tissue or diagnosis of a patient are obvious applications for gene
expression.

Unfortunately, the current technology does not allow for measuring the real protein abun-
dance, but it is possible to measure the amount of mRNA. It would be helpful if there was
a one-to-one mapping from genes to mRNA to protein, but this simplistic view of gene ex-
pression does not hold because the process of building proteins is quite complicated. The
complication arises mainly due to the gene structure, see Figure Bl A gene can be spliced
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Prepare’ CONASEIone Brepare Microarray

Figure 2.3: Basic principle of microarray technology

(the introns are cut and only the exons are translated) during the transcription phase. Also,
the choice of the promoter for a gene can result in transcribing different proteins.

Even though there is no high correlation between mRNA abundance and protein abun-
dance, it is believed that measuring the mRNA levels gives us valuable information about
the protein levels.

The first step in analyzing gene expression abundance is to measure it. This is the topic of
the next section.

2.1.2 Microarrays

Microarray technology gives us the possibility of measuring (quantifying) the abundance of
mRNA expression for thousands of genes simultaneously. The most common microarrays
types, are cDNA and oligonucleotide arrays. We briefly describe how ¢cDNA microarrays
work. The basic phases are shown in Figure

Physically, a microarray is a small glass slide. At fixed locations called spots, single-
stranded DNA molecules that represent genes of interest are placed. Each such spot measures
the relative amount of transcribed mRNA. The procedure is as follows:

e Probe preparation. The solution that contains the single-stranded DNA is prepared.

e Sample preparation. Two mRNA samples, one reference sample (healthy tissue)
and one from the tissue that we want to analyze (cancer tissue), are extracted from the
patient. The mRNA is converted into more stable cDNA solution. Then the reference
sample is labeled with green-dye reporter and the target sample with red-dye reporter,
after which the solutions are mixed.
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e Hybridization. The sample solution is put on the array. The idea behind this step is
that complementary sequences will bind to each other. If in the target sample we have
more cDNA for a specific gene, than it is expected that more probe DNA will bind
to it. Thus, on the corresponding spot on the array, there will be more green labeled
molecules.

e Washing. After hybridization, the solution that did not hybridize is removed.

e Scanning. The array is scanned with a scanner that generates two images, one for
each color. The amount of green and red color is measured and stored for each gene.

After scanning, the chemical process is finished and now the raw data are ready for analy-
sis. There are many issues that should be addressed in a microarray experiment. We will not
discuss them here, but refer to (Yang and Speed, 2002; |[Edgar et al., 2002} [Brazma, 2003)).

One microarray experiment gives information about the mRNA levels of one patient. If we
want to compare the expression levels in different patients, we need to repeat the experiment
for each patient. Thus in the end, we will obtain a data matrix containing the raw data for
each patient.

Given the current state of technology, microarray experiments are not perfect and the
resulting raw data are very noisy. The first step in the analysis of the data is called low-level
analysis and its aim is to reduce the noise introduced by the experimental process. This
analysis includes image analysis, normalization, missing value handling, feature selection,
etc. There are plenty of methods (Quackenbush, 2002} [Park, 2003} [Huber et al., 2002) that
address these issues.

The low-level analysis transforms the raw data matrix into a new matrix, which is called
gene expression data (GED) matrix, see Figure 241

probes
—_—

sauahb

L expression level
of gene iin probe j

Figure 2.4: Gene expression data matrix

Usually the rows of the matrix represent the genes on the array and the columns represent
the patients (or different states of a cell). The number of rows is quite large (in the order of
10°) and the number of columns is small (10 to 100). The shape of the GED matrix influences
the complexity of the analysis.
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2.1.3 Analysis of GED

There are many biological questions that can be answered using gene expression data. Each
question requires a specific type of analysis and the difficulty of the problem varies from one
analysis to the other, see (Friedman and Kaminski, 2002 von Heydebreck et al., 2001).

Differentially expressed genes. Finding differentially expressed genes is sometimes con-
sidered a last stage in the low-level analysis. This study searches for genes (rows in the
matrix) that exhibit different expression levels under different experimental conditions. For
example, let us imagine a study in which we have patients with cancer and healthy patients
(usually known as disease versus healthy study). We say that a gene is differentially ex-
pressed if there is a significant change in expression levels between the two types of patients.
In Section we will demonstrate how one can determine this difference in expression levels.

If such a study is required, than the output of the analysis will be a list of genes together
with the scores giving the amount of differential expression.

Sample classification. One of the first successful studies was to group tumors into classes
based on the expression levels (Golub et al., 1999)). The classification of tumor types can be
used as a diagnostic and therapeutic tool.

An important point to note is that, given the shape of the GED matrix, this problem is
not difficult. We have few sample data points (50 to 100) in a very high dimensional space
(10°). Three types of analysis can be seen at this point.

e Class prediction: Here the classes are known (the columns of the matrix are labeled
with the disease type) and a classifier is trained using this data. This is a typical
supervised learning task, and there is a large variety of methods to achieve this (from
simple linear discriminant analysis, classification trees to support vector machines and
neural networks). After the classifier is trained new patients can be investigated for
diagnosis.

e Feature selection: This can be thought of as a subtask of class prediction, but the
result of such an analysis can be used to find out what genes are significant for discrim-
inating between diseases. Thus the result can be used in feature experiments design,
focusing the analysis on the significant genes.

e Class discovery: Here the aim is to find meaningful groups in the data, i.e. to recover
known types of tumors or to find new ones. This is a typical unsupervised classification
task, and as for the supervised case there are several methods that can be used.

For more details on learning methods we refer to (Hastie et al., 2001]).

Gene classification. Another type of analysis is to cluster genes with respect to the sam-
ples’ (patients’) profiles. The ultimate goal of this analysis is to infer which biological pro-
cesses are meaningful for our study.

Unlike in the previous case, here the problem is more difficult. Now we have plenty of
sample points (genes), but the space in which they lie is considerably smaller (around 10 or
20 samples). Clustering in such a setup can be meaningless, giving no new biological insight
for our study. Figure shows the resulting clusters for a microarray study.



CHAPTER 2. TECHNICAL BASIS 9

160, Cluster A {100 genos)
" - .

I P

Figure 2.5: FExample of gene clustering.

The questions that arise naturally after the clusters are obtained are: What meaning do
the genes from the same cluster have? Do they have the same biological function?

It turns out that in general genes in the same cluster can have completely different bio-
logical meanings. It can happen that two genes have similar expression profiles but are not
biologically related at all.

Biclustering. There are other types of analysis that can be carried out with gene expression

data. One method that drew the attention of the community is biclustering (Cheng and Church, 2000)).
A bicluster is defined as a subset of genes that exhibit similar behavior across a subset of

samples. Thus biclusters are submatrices of the expression data matrix. Finding biclusters is

not a trivial task and different methods were proposed (Tanay et al., 2002)), but the problem

is still considered open.

Augmenting the GED. Recently new ideas were proposed to address the problems dis-
cussed above. Since we are interested in understanding the mechanisms of a disease at the
genetic level, more biological knowledge should be included in the study.

One of the first ideas was to analyze the gene expression data together with the regulatory
regions of the genes. In this way the genes having similar functions should be clustered
together.

The extension of this idea and the development of biological knowledge databases posed
new analysis tasks. Biologically interesting groups of genes, genes that belong to a pathway
or genes that are known to have the same biological function, are formed. The task is to
analyze these gene sets using the gene expression data.
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Some methods have been proposed already. For example scoring genes belonging to a
pathway is discussed in (Rahnenfuhrer et al., 2004]). Sets of genes having the same biolog-
ical function can be formed using Gene Ontology, see Section Scoring these gene sets
is discussed in (Draghici et al., 2003} [Beissbarth and Speed, 2004; [Al-Shahrour et al., 2004}
|Gentleman, 2004c)). These tools will be described in more details in Chapter

In this thesis we will discuss how the scoring of gene sets (GO terms) can be improved
by incorporating more biological knowledge.

2.2 Hypothesis testing

Hypothesis testing is a part of statistical decision theory. Its aim is to determine whether
there is enough statistical evidence to let us conclude that a hypothesis about a model,
is supported by the data. The discussion in this section is based on (Lehmann, 1986;
|Casella and Berger, 2001} Westtall and Young, 199J)).

Definitions. In statistics, a hypothesis is a statement about a population parameter. There
are two complementary hypotheses in a testing problem - the null hypothesis and the alter-
native hypothesis. They are denoted by Hy and Hj, respectively.

If our population is modeled by a random variable X, whose distribution F(X;0) depends
on the parameter 0, then we can write the null and the alternative hypothesis as Hp: 0 € O
and Hj : 0 ¢ Oy, where Qg is a subset of the parameter space ©.

To illustrate this, suppose we want to decide if a treatment affected the heart rate for some
patients. If we denote the average heart rate by 0 and we know that without treatment the
average heart rate equals 0, then we will test for Hp : © = 0, there is no change in patients
heart rate after the treatment, versus Hj : 8 # 0, some change in heart rate appeared after
the treatment was submitted.

As we stated above the purpose of hypothesis testing is to establish if experimental evi-
dence supports the rejection of the null hypothesis. The experimental evidence is specified in
terms of a test statistic g(X) = g(Xy,...,Xn), where Xj,..., X}, are samples from a random
variable X and g is a multivariate function. An example of a test statistic is g(X) = X, the
sample mean. Based on the test statistic we decide if we reject Hp. The subset of the sample
space for which the test rejects Hg is called rejection region. The complement of the rejection
region is called acceptance region.

Error types. There are two types of errors that appear in hypothesis testing. First, suppose
that Hp is true and the test rejects Hp, then we make a Type I error (sometimes referred to
as false positive). On the other hand, if H; is true and the test statistic decides to accept Hy,
then we make a Type II error (or false negative). Since we have a background distribution
for the sample we can define these errors in terms of probabilities.

Let R be the rejection region for a test statistic. The Type I error is defined as:

a=P(X eR|0), forall e,
Similarly a Type II error is defined as:
P(X¢R|8)=1—-P(XecR|B), foralldcof.
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If we define the function B(6) = P(X € R | 0), then we can express both types of errors
with this function: If 8 € @y, then 3(0) is the probability of a Type I error and if 8 ¢ O
then 1 — (0) is the probability of a Type II error. The function ((6) is called the power
function of the test. The probability of a Type I error is also denoted by o and is called the
significance level of the test.

Ideally 3(0) = 0 when Hy is true and 3(6) = 1 when Hj is true. This situation is unlikely
to happen in practice and a compromise must be made. An important observation is that
by setting a small value (close to 0) for the Type I error does not mean that we also obtain
a large value (close to 1) for the Type II error.

In hypothesis testing we must decide what type of error we want to keep low. For example,
if we are testing for a disease and we incorrectly decide that the patient has the disease, then
the treatment will be useless for the patient. If on the other hand we fail to diagnose the
disease of a patient, then the patient can die. Since the null hypothesis is the one that is
stated, it is of common practice to control the Type I error probability of the test. This is
done by setting the significance level to . Then, we search for the test that minimize the
Type II error. Given « and a test statistic we can define a rejection region. If the sample
points lie in the rejection region then we reject Hp in favor of Hy. For example, if we are
interested in the alternative hypothesis, then by setting a small o we accept Hy only if it is
strongly supported by the data.

p-Values. The procedure described in the previous paragraph has the following drawback:
We either accept Hg or we reject Hp based on the level . We would like a measure the
amount of statistical evidence with which the data is supporting the alternative hypothesis.
This measure is given by the p-value of the test.

Mathematically, a p-value p(X) is a test statistic such that small values of p(X) give
evidence that Hj is true. It can be defined as

p(x) = sup P(g(X) = g(x) | Ho).
Ho

where g(X) is a test statistic such that a large value of g gives evidence that Hy is true (x is
the observed sample). In other words, the p-value of a test is the probability of observing a
test statistic at least as extreme as the one computed from the sample, given that Hg is true.

Another way of defining a p-value is to condition on a sufficient statistic. Roughly, a
sufficient statistic for a parameter 0 is a statistic that captures all the information on 0
that is contained in the sample. See (Casella and Berger, 2001)) for more details on sufficient
statistics. If S(X) is a sufficient statistic for the model f(x | ) under Hy and g(X) is a test
statistic such that a large value of g give evidence that H; is true, then a valid p-value is

p(x) =P(g(X) = g(x) | S(x) =s).

The p-value of a test provides valuable information since it gives the result of a test on
a more continuous scale. If a specific test level « is set than comparing p(x) with o tells if
the Hp has to be rejected. Even more, the smaller the p-value, the more statistical evidence
exists to support the alternative hypothesis.

2.2.1 Statistical tests

In this section we briefly describe two test statistic that we will use in the rest of the thesis.
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t-test. Let Xi,...,X; be a random sample from a normal distribution N(ux,ci) with
mean px and variance o‘i. Let Yq,...,Ym be a random sample from a normal distribution
Ny, o‘%) (both samples are independent one of each other). The case of sequential sampling
usually arises in applications involving random variables that are observed under different
experimental conditions (e.g. microarrays studies). We are interested in testing

Ho:pux =py versus Hy:px # py.

Let us further assume that ox = oy = o, but unknown (without this assumption the problem
is considerably harder). In other words we are interested in testing the hypothesis that the
random variables X and Y came from the same population.

We define the random variable w = X —Y. Under the null hypothesis the mean and the
variance can be calculated as

<N

2 ox o
LLW:O and O‘W:?‘FF

Thereafter, we define the test statistic

&
T == 7.

O-W

Since we do not know o we use the pooled variance estimate OQW of the whole sample. An
unbiased estimate for o2 is given by

i=1 i=1
Thus we obtain the statistic

T=—=.

$2 (% + )
Under the null hypothesis, T has a Student’s t-distribution with n+m—2 degrees of freedom.
This test is called two-sample t test.

To obtain a p-value for this test we must compute

$2 (% + ) $2 (3 +w)

m

where Fi nim-—2 is Student’s t the distribution tnm—2. with n +m — 2 degrees of freedom.

We use the t-test for determining the differentially expressed genes in a microarray study,
see Section For example, suppose we have two genes for which the expression levels
are given in Table EXT1

There are 15 measurements, 10 from patients that have cancer and 5 from healthy patients.
We want to determine which genes are affected by the disease. The assumption here is that
the expression level of a gene is normally distributed. If a gene expression is not affected by
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Tumor | Y Y Y Y Y Y Y Y Y Y N N N N N
geney | 1.54 1.68 1.10 098 2.01 145 133 1.67 187 1.51]-0.16 -1.13 -0.89 -0.99 -1.10
geney | 0.13 -0.17 0.01 -0.55 0.76 0.14 0.02 -0.10 0.03 0.07 | 0.20 0.34 -0.23 0.12 -0.22

Table 2.1: Numerical expression data matrix.

the disease then we expect the same value for all measurements. Since the measurements are
not very precise, some noise is introduced, which is modeled by a normal random variable.

Therefore we can apply a t-test to see if the expression levels of tumor versus healthy are
coming from the same distribution. For gene; we obtain a p-value of 1.190e-05, thus we can
safely accept the alternative hypothesis: The samples came from different populations and
the gene is differentially expressed. On the other hand, for gene, we obtain a p-value of 0.95,
and thus the data support the null hypothesis: The samples came form the same population,
thus gene; is not differentially expressed.

Fisher’s exact test Let X ~binomial(m,px) and Y ~ binomial(n,py) be two indepen-
dent observations from two binomial distributions with fixed m and n. We want to test the
hypothesis

Ho:px =py versus Hj:px#py.

Under the null hypothesis (p = px = py) the joint density of (X,Y) is

f(x,u | Ho) = (T) <L‘>pwu —pymin e,

We see that all the information is summarized in the random variable X+ Y. So, T = X+Y is
a sufficient statistic under Hy. Knowing T, we can use the test statistic g(X,Y | T =1t) = X,
which gives evidence for rejecting Hp if X attains an extreme values. A small value for X
will result in a large value for Y = T — X and vice-versa. It can be easily shown that the
conditional density of X knowing T = t is hypergeometric(m+n, m,t). The probability for
obtaining the value x, 0 < x <t is given by

()

(™™

Px|T=t)= (2.1)

Thus, we can define a p-value for this test as

min(m,t) /m n
p(x,y) =Px>x|x+y=1t)= Z (k)(tfk)

k=x ( m:L'_n)

The test defined by this p-value is called Fisher’s exact test.

We further describe how this test is used for deciding whether two characteristics (groups)
A and B are independent in a population sample. First, a sample is taken from the population.
Then a contingency table is formed, see Table

Here S denotes the sample size, X is the number of sample points that are in both groups
A and B and X’ the number of sample points from groups A and B. Similarly Y and Y’



CHAPTER 2. TECHNICAL BASIS 14

(SNRoN

—| < x|
<

M
Y| N
S

Table 2.2: Contingency table

denote the number of sample points from groups A and B, respectively A and B. M and N
are the marginals for group B and B. T and T’ are the marginals for groups A and A.

Since we are sampling at random from a fixed size population the joint distribution of X,
X', Y, and Y’ is multinomial

|
PX =0, X' =X, Y =y, Y =y/) =

2 x Xy Yy
= Xix/lyly/1 PABP ABP 5P 45:

where p 45 is the probability of a sample point to be in both group A and B and so on. It can
be shown that testing for independence between A and B is equivalent to testing if the ratio

p= %%% is equal to 1, see Section 4.6 from (Lehmann, 19806|) for a complete derivation.

To carry out this test, we condition on the marginals X + X’ =m and X +Y = t. Under
the hypothesis of p = 1 we obtain the hypergeometric distribution

(5

(™™

PX=x|X+X =mX+Y=t)=

This is the same distribution as in the previous case, see equation (E1I), in which we tested
for equality of two binomial probabilities.

In other words testing the independence of two groups in a contingency table conditioned
on the marginal probabilities is the same as computing a Fisher’s exact test. We will use
Fisher’s exact test for scoring groups of genes for enrichment as defined in Section 22311

2.2.2 Multiple testing

In the previous paragraph we discuss testing a single hypothesis for a data set. In many sit-
uations multiple questions are posed for an experiment or the same question is investigated
in similar experiments. Thus, multiple hypothesis must be tested and the result of all tests
should be included in the final result of the analysis, see Chapter 1 from (Westtall and Young, 1993)).

The problem of determining if a gene is differentially expressed in a microarray exper-
iment (see Section LT3 fits naturally in the multiple hypothesis testing framework; the
measurements of thousands of genes simultaneously generate large multiplicity problems and
the aim of the analysis is to quantify in some statistical manner the differential expression of

each gene.
We will use this problem to motivate and to introduce the basics of multiple testing.
First, let X = (x{j)mxn be the gene expression data matrix with m genes and n samples

(patients or cell states). For each column j there is a response variable yj. For example a
binary variable discriminating between tumor or healthy cells. The columns of the matrix,
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together with the response variables are thought as random variables (xj,y;),for j =1,...,n
from a population of interest (x; denote the random variable for the j*™ column of matrix X).
Let X; denote the expression level of gene i and let Y be the response vector. For each gene
i we form the null hypothesis

Hoi : there is no association between X; and Y.

We saw in Section 22Tl that in the case of a binary response Y, that a appropriate test
statistic is a two sided t-test. Based on the p-value computed for each gene 1 we accept or
reject the hypothesis Hp;. In the case of testing a single hypothesis we control the Type I
error. For example, we reject the null hypothesis if the p-value is smaller than « = 0.05. To
show why we cannot use the usual significance level « in the presence of multiple hypothesis
we consider the following hypothetical experiment: The matrix X is randomly generated. All
entries are iid. drown from a standard normal distribution. If p; denotes the p-value of gene
i, then it is easy to show that

Pmin = P(minpi <a)=1—-(1- (X)m.
i

Pmin 1S the probability of rejecting at least one null hypothesis from m hypotheses at a
specified level a. For o« = 0.05 and m = 10 we will reject at least one null hypothesis in
40% of the cases. For m = 100 the probability increases to 0.995. Under the null hypothesis
we expect m X « hypothesis to be rejected. In the case of microarray experiments with
m ~ 10.000 tests, the result of the analysis will give us almost 500 differentially expressed
genes even under the null hypothesis of no true differentially expressed genes.

Type I error rates. Due to the multiple testing problem it is necessary to define new
types of error rates. There are several extensions of Type I error rate for multiple testing
procedures, see ((Dudoit et al., 2003b; [Westfall and Young, 1993)) for a detailed list. One such
error rate is the Family-Wise Error rate (FWE).

Let Hp denote the multiple test null hypothesis: He,,...,Hpi, are true, for some
{i1,..., .} € {1,...,m}. This null hypothesis depends on the joint distribution of the test
statistics T; for all genes and is also called the null distribution of the test. Then, the FWE
is defined as

FWE = P{reject at least one Hop;i | Ho}.

Similar as in the single hypothesis testing scenario, a multiple testing procedure is controlling
the FWE at a level « if FWE < «.

Another used error rate is the False Discovery Rate (FDR) introduced by (Benjamini and Hochberg, 1
Let R denote the number of rejected hypotheses and let V denote the number of true null
hypotheses that are rejected, the Type I errors. Then, the FDR is the expected proportion
of Type I errors among the rejected hypotheses, that is

FDR — {E(\—R/) if R >0,

0 if R=0.
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Adjusted p-values. Given an error rate, for example the FWE, one can define rejection
regions or p-values for deciding on accepting or rejecting the null hypotheses. p-values are
more useful, since they do not need the test level to be determined in advance. As in the
single hypothesis case, a p-value (adjusted p-value) is defined for each test as

pi = inf{x | Hoy is rejected at FWE = .

Note that the adjusted p-value depends on the null distribution.

Having computed the adjusted p-value, we reject Hp; at a FWE «, if p; < «. In our
example, we say that gene 1 is differentially expressed. There are several methods for adjusting
p-values. One of the simplest (and also the most conservative) method is the Bonferroni
adjustment. If p; denotes the unadjusted p-value then

pi = min{mpy, 1}.

This is equivalent to rejecting Ho; at a FWE «, if p; < oo/m. Thus we will reject a null
hypothesis only if there is very strong evidence in the data. Other methods are not so conser-
vative, see ([Dudoit et al., 2003b}; |Ge et al., 2003)) who compare different p-value adjustment
methods for microarray data analysis.

Using adjusted p-values is appropiate when multiple questions are investigated simul-
taneously. However the raw p-values should also be considered as a measure of evidence;
when computing adjusted p-values several assumptions, e.g. independence between the test
statistics, are made depending on the method used. Thus, taking into account both raw and
adjusted p-values the results of the analysis will be more accurate.

2.3 Ontologies

In this section we introduce some generalities about ontologies and discuss the use of ontolo-
gies in bioinformatics, focusing on Gene Ontology (GO). For further details on ontologies and
their use in bioinformatics we refer to (Gruber, 1993} [Kremer, 2001} [Staab and Studer, 2004
[Jones and Paton, 1999; [Ashburner et al., 2000]).

In in Artificial Intelligence (AI) ontologies are seen as formal models of shared under-
standing within a domain. They are the basis of Knowledge Management, aiming to bring a
consensus in the way a specific domain is described.

There have been many attempts to define the term ontology. It was first introduced in
philosophy, where an ontology is a systematic account of existence. Thus the meaning in Al
is that what exists is exactly that which can be represented.

Definition. The Stanford Knowledge Systems Lab provides the following definition:

”An ontology is an explicit specification of some topic. For our purposes, it is a
formal and declarative representation which includes the vocabulary (or names)
for referring to the terms in that subject area and the logical statements that
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describe what the terms are, how they are related to each other, and how they
can or cannot be related to each other. Ontologies therefore provide a vocabulary
for representing and communicating knowledge about some topic and a set of
relationships that hold among the terms in that vocabulary.”

More formally an ontology is defined in (Gruber, 1993)) as:

"A formal explicit specification of a shared conceptualization for a domain of
interest.”

Here by conceptualization we understand a simplified view of the word that we wish to
represent for some purpose.

The Universe of Discourse is the set of objects (entities) that can be formally represented
for some domain. This set of objects together with the relations between the objects make up
the representational vocabulary. Based on this vocabulary we can define an ontology by a set
of representational terms. In such an ontology, definitions associate the names of entities in
the universe of discourse (classes, relations, functions) with human-readable text describing
what the names are meant to denote, and formal axioms that constrain the interpretation
and well-formed use of these terms.

Hierarchical structure. Ontologies can be represented graphically by a semantic net or a
conceptual graph, entities representing the nodes and the edges being the relations between
them. In many cases the graph structure is as simple as a tree, but in the case of complex
ontologies this is not the case. Since there are at least two types of relations between entities,
namely ‘is a member of " and ‘is a subset of’ plus other domain specific relations, undirected
loops can be formed in the graph. We are particularly interested in the graph structure and
we will exploit its properties throughout this thesis.

Bio-ontologies. Ontologies arise naturally in biology (Jones and Paton, 1999), since:

e hierarchical structures of concepts are of primal interest in the organization of knowledge
in the biological sciences. As an example we have the classification of living entities
into kingdoms, phyla, classes, orders, families, genera, species, etc.

e biological systems are generally very complex, especially at the molecular level. Here
the hierarchical relations are complex and likely to exhibit any problems.

e scientific areas are generally more formal than non-theoretical ones. It is hoped, that
analyzing biological theories will solve many of the problems that exist in non-technical,
less formal areas.

Thus ontologies are needed in bioinformatics, giving the necessary structures and tools for
working with the biological knowledge. In the last years more and more ontologies for bioin-
formatics appeared: Sequence Ontology Project (ontology describing features on a nucleotide
or protein sequence), Edinburgh Mouse Atlas Project (a digital atlas of mouse development),
TAMBIS Ontology (ontology of molecular biological and bioinformatics concepts), BioCyc
(collection of Pathway/Genome Databases), etc. A good resource for the currently available
ontologies for biological domains is Open Biological Ontologieﬂ.

"http://obo.sourceforge.net/



CHAPTER 2. TECHNICAL BASIS 18

We are interested in the Gene Ontology ([Ashburner et al., 2000; [Consortium, 2001]), the
most widely accepted description of genes and gene-products for eukaryotes.

2.3.1 Gene Ontology

The Gene Ontology project started from the fact that a large fraction of gene products (a
physical entity: a protein, or a functional RNA such as alpha-globin) that have a role in the
core biological process are found in all eukaryotes. Thus the biological knowledge of these
gene products can be transfered from one organism, for which experiments are easier, to
other less tractable organisms. The goal of the GO project was to produce an ontology that
describes the roles of genes and gene products in any organism.

The GO started in 1998 as a joint project between three model organism databases:
FlyBase (Drosophila), Saccharomyces Genome Database (SGD), Mouse Genome Informatics
(MGI). Later on the GO turned out to be widely accepted by the bioinformatic community
and more organisms were added to it, including human. A detailed list of these can be found
at the GO Web resourceH.

The ontologies. There are three ontologies that describe attributes of gene products in
their independent biological areas (kingdoms): molecular function, biological process and
cellular component.

A snapshot from the AmiGO browser,

which shows the three different ontologies, is  =60:0003673 : Gene ontology ( 146200 ) @
. . @ GO:0008150 : biclogical process ( 96312 ) &
shown in Figure EZ6 [ GO:0007610 ; behavior ( 2293 )
» @ GO:0000004 : biclogical_process unknown ( 26924 )
FH @ GO:0009987 ; cellular process ( 31905 )
@ GO:0007275 : development ( 14496 )

e Molecular Function (MF) describes go
. . R B @ GO:0007582 : physiological process ( 60310 )
the biochemical activity of a gene prod- [ © GO:0050789 | regulation of biclogical process (2533 )
. L0 EH@ GC:0016032 : viral life cycle ( 252 )
UCt. It deSCleeS acthltleS and not the B @ GO:0005575 : cellular_ component ( 79199 ) &
@ GO:0005623 : cell ( 56534 )
111 1 i To— . ® GO:0008372 ; cellular_component unknown ( 18861 )
entities performing the actions (e.g. lig 28 G000008 /2 ol comeanat
and’ enzyme, kinase activity, etc) @ GO:0019814 ; immunoglobulin complex { 19 )
N Ha i
@ GO:0005841 : unlocalized ( 516 )
. . . @ GO:0019012 ; virion ( 1268 )
e Biological Process (BP) describes B GO:0003674 ; molecular function ( 97507 ) &
e .. . F@ GO:0016209 : antioxidant activity ( 320 )
activities that may require more than [B® GO:000548€ ; bincing ( 26453 )
. @ GO:0003824 : catalytic activity ( 32256 )
one step and need assemblies of gene B1® GO:0003754 : chaperone activity ( 883 )
. A Lo, @ GO:0030188 : chaperone regulator activity ( 13 )
pI’OdUCtS for achle\nng these activities. E @ GO:0030234 1 enzyme regulator activity ( 1810 )
« @ GO:0005554 ; molecular_function unknown ( 27869 )
vitl 1 3 1 E @ GO:0003774 : motor activity { 414 )
ACthltleS anOIVG phySlC&l or Cheml «» @ GO:0045735 : nutrient reservair activity ( 36 )
i e : i
Cal transformatlons. Examples Of BP @ GO:0004871 : signal transducer activity ( 6386 )
3 L @ GO:0005188 : structural molecule activity ( 2898 )
are Cell death? translatlon, pyra‘mldlne @ GO:0030528 : transcription regulator activity ( 7695 )

metabolism, etc. e GO.0002215 | brancporior aciy (Be 1)
. @ G0:0030533 : triplet codon-amino acid adaptor activity ( 553 )
e Cellular Component (CC) describes
the location in the cell where a gene Figure 2.6: AmiGO viewer: listed are the
product is active. Examples of CC three independent ontologies
include ribosome, nuclear inner mem-

brane.

2http://www.geneontology.org
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A gene product can be present in any of the three ontologies, implying that the relation
between a gene product and the ontologies is a one to many relationship. This is in accordance
with our biological knowledge (Ashburner et al., 2000)) that a protein can

function in several processes, contain domains that carry out diverse molecular
functions, and participate in multiple alternative interactions with other proteins,
organelles or locations in the cell.

The current status of the existing ontologies (January 2005) is shown in Table

Ontology No. of Terms
Molecular Function 7370
Biological Processes 8808
Cellular Components 1420

Table 2.3: Current status of the GO terms for each ontology.

From now on we will use GO terms to refer to the objects (entities) of the three on-
tologies. Also, we will use as a synonym GO node. Definitions for GO terms are taken
from the Oxford Dictionary of Molecular Biology (Smith, 1997), or other sources like SWISS-
PROT(Bairoch and Apweiler, 2000)). For each term the source of the definition is stored and
can be accessed. More details about this can be found in (Consortium, 2001]).

The DAG structure. Similar to other existing ontologies, GO has a hierarchical structure
that forms a directed acyclic graph (DAG). For such a graph we can use the notions of child
and parent. The abuse of notations here is that a child can have multiple parents.

The child-parent relation between terms (nodes) can be of two types:

is a: type means that the child is an instance of the parent, e.g. a mitotic chromo-
some is an instance of a chromosome,

part of: type says that a child is a component of the parent, e.g. the telomere is a
component of a chromosome.

Child terms can have different types of relations (is a or part of) with their different parents.
This structure can be seen in Figure 27 for a small part of the GO ontology.

Each GO term in the ontology has a unique identifier. For example the root of the BP
ontology has the identifier GO:0008150. From Figure we see that each GO identifier is
linked to a definition. There is almost no relation between the term identifiers, even if all
nodes have at least one type of relation with other nodes. One reason is that the ontologies
change with time and new terms can be introduced between a parent and a child.

Since in the literature the notions of child and parent are used with different meanings
we emphasize again the way they will be used in this thesis.

For two GO nodes u and v, we will say that u is a parent of v if and only if v has any
type of relation (is a or part of) with u. Thus, node v is more specific than node u. In this
case v is the child of u.
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0008150

0050789

0050896 050791

0009605 0050874
0009607 0019538 0009059 0009893
0006952 0006412 0009889

0006955 0009891
0001816 0042107

0001817 0042089

0042108

Figure 2.7: A part of the GO graph (the black edges represent is a relation, and the red edges represent
part of relation). The label of the nodes is the GO identifier: 0008150 = GO:0008150

Annotations. At this point the GO is just a structured vocabulary that defines GO terms
for gene products with respect to the functions that they fulfil, the processes to which they
contribute and their location within cells.

As we mentioned above the GO term represents the function or the process that a gene
product has, respectively accomplishes, and does not represent the entity itself. Thus we
need to associate genes and gene products with one or more GO terms, a gene product can
have multiple functions, can be involved in more than one biological process, or can be found
in different cells.

This is precisely the goal of the Gene Ontology Annotation (Camon et al., 2004)).

To provide assignments of GO terms to all well characterized proteins and in
particular to that of the human proteome.

The focus is in providing annotations for the UniProt Knowledgebase.

Since the three ontologies are independent, the annotation of a gene product to one of
them is also independent of its annotation to the other two. When a gene product is annotated
with a GO term, the source, which may be a literature reference, or a computational analysis,
is attributed to the annotation. Together with the source an evidence code is also stored,
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that tells the evidence on which the annotation is based. There is a standard set of evidence
codes such as inferred from mutant phenotype (IMP), inferred from direct assay (IDA) or
inferred from electronic annotation (IEA).
The GO annotations are obtained using both manual and electronic techniques (Camon et al., 2004)).

e Manual annotations are obtained by exploring the information from published sci-
entific literature by trained biologists. Since it involves human labor the process is
time consuming but reliable, not considering the subjectivity of the biologist. It is used
especially for more specific annotation, i.e. low-level terms in the GO hierarchy.

e Electronic annotations are generated using automated methods that either

— convert old files which contain previous knowledge (e.g. converting the Enzyme
Commission (EC) numbers for the already annotated proteins to GO terms, based
on some mapping form EC numbers to GO id’s),

— use databases cross-references (e.g. UniProt and InterPro),

— use automated information extraction methods that try to convert the biologi-
cal knowledge from different sources (mainly scientific papers) to GO ontologies.
There is a big hype in developing such methods (Hennig et al., 2003; [Raychaudhuri et al., 200:

The electronic annotations provide a fast and efficient way of associating high-level GO
terms to a large number of proteins.

Since it is important to distinguish between manual and electronic annotations, the last
ones are attributed with the IEA evidence code.

In the present thesis we make use of the GO annotation as a link between biological
knowledge (the GO ontologies) and the gene expression data. Using the annotations we can
map the genes from microarray experiments to the GO terms.

Since GO term definitions are widely accepted and assumed to represent as best as possible
the biology behind the gene products it make sense to try to find out which GO terms are
relevant for some experiment.



Chapter 3

Current methods for scoring GO
terms

New methods have been proposed for analyzing gene expression data in which annotations
from the GO database are integrated into the analysis in order to gain biological understand-
ing. Gene classes obtained from GO are scored with respect to their significance.

In the following we analyze some of the proposed approaches for solving this problem.

Onto-Express. One of the first approaches is Onto-Express (Draghici et al., 2003]). The
authors’ goal was to automate the process of translating the result of a microarray experiment
to a list of functional categories, which should give better understanding of the underlying
biological phenomena. At the same time, they proposed a statistical analysis of such func-
tional categories.

To construct functional profiles of the experiment under study, first the functional groups
need to be formed. For this, Gene Ontology (see Section ZZ3Jl) and Proteomeﬂ databases are
used. Further, a list of interesting genes (genes that are regulated, differentially expressed
genes, genes that are correlated with a phenotype and so on) is needed as the input. Since
the origin of this list of genes does not matter, the method is not limited to microarray
experiments.

For each functional group (e.g. a GO term) a test statistic is computed. The significance
of the group and the number of genes mapped to the group are returned.

For the statistical analysis, the authors argue that by comparing the expected number
of genes found in a specific functional group with the outcome of the experiment for the
same group, the researcher knows if that functional group is relevant or not. For example,
suppose that for a GO term we find 100 genes that are annotated (mapped) to it (see the GO
annotations from Section EZZ3T]) from the list of interesting genes and we expect 100 genes to
be mapped to this GO term, then this functional group should not be reported as significant
in spite of the large number of interesting genes. On the other hand, if for a GO term we
find 30 genes in the list and we expect around 5 genes to be mapped to this group, then

"http://www.proteome.com/
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this means that we observe six times more genes than expected and such a group should be
considered significant.

To obtain statistically correct results, the authors use an urn model. Let Bio be a func-
tional group. Suppose that there are N genes on the microarray (balls in the urn), M of
which are in group Bio (white balls) and N — M are not (black balls). If K genes are selected
at random (in our case the list of interesting genes), then we are interested in the probability
that exactly x genes from K are in Bio. In this case we do sampling without replacement
(a gene once selected cannot be selected again) and the distribution of x is modeled by a
hypergeometric distribution, see equation ([ZII) from Section EZZT]

For calculating the significance of a functional group based on the above model, a p-value
can be computed by summing the probabilities of getting at least x genes in group Bio. This
test is similar to Fisher’s exact test, see Section 2211

The authors argue on the use of asymptotically equivalent tests, such as the binomial test
and the x? test. They use all these tests depending on the size of the data, using one test
where the others lack in giving accurate results.

Some factors that influence the result of the analysis are discussed. First, the method
depends on the quality of the input. If there are false positives in the list of interesting genes,
then the result will be noisy, the test not accounting for this error. Second, a bias is induced
by the arrays that are enriched with a certain type of genes. Third, some caution needs to
be taken when judging p-values. There is no multiple testing correction (see Section ZZZZ).
Finally, interpreting the significance of a functional group depends on the initial list of inter-
esting genes.

The same ideas are used in several tools: FatiGO (Al-Shahrour et al., 2004)), GoMiner
(Zeeberg et al., 2003)), MAPPFinder (Doniger et al., 2003|), GOstat (Beissbarth and Speed, 2004)),
GO::TermFinder (Boyle et al., 2004) and GOstats (Gentleman, 2004c)). Although these tools
offer almost the same functionality, the accent being put on the software implementation and
availability (issues that are important but beyond the purpose of this thesis), we will briefly
emphasize the difference between them.

FatiGO. As the name states, only Gene Ontology categories are used as functional groups.
The first difference to the method proposed by (Draghici et al., 2003)) is the way in which the
GO terms to be investigated are chosen. A GO level (see Section BTl for a proper definition of
a DAG level) is given by the researcher, and only the GO terms from this level are analyzed.
Then, using the GO hierarchical structure the genes are pushed up the DAG, until they are
mapped to the terms on the specified level, see Section 23Tl

For computing the significance of a GO term Fisher’s exact test is used. The mul-
tiple testing problem is considered by the availability of three p-value adjustment meth-
ods: Bonferroni FWE adjustment (see Section ZZZ), (Benjamini and Hochberg, 1995) and
(Benjamini and Yekutieli, 2001]) false discovery rate adjustment.

Another problem that is addressed is the non-unique annotation of the genes, the tool
being able to cope with it.

GoMiner. As FatiGO, GOMiner only uses the Gene Ontology database. As functional
groups all GO terms are scored for significance. Fisher’s exact test is used and some multiple
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testing corrections are possible. The authors argue that the resulting p-values should be con-
sidered more as heuristic measures, than as measures of the amount of statistical significance.

Two issues are pointed out. The first one is about the dependence of gene data. This
means that gene IDs that are mapped to the same GO term can code for the same gene.
This affects the significance of a group; it may happen that half of the genes mapped to a
GO term are duplicates and thus this GO term is statistically enriched. Normally this issue
should be solved in an earlier stage of the analysis, but given its consequences, it should be
addressed.

The second issue is the visualization. An interactive DAG browser is available, a tool
that helps in understanding the data, somehow showing the strong dependences between the
GO terms.

MAPPFinder. This tool integrates GO analysis and biological pathway maps. The func-
tional groups are again GO terms. Three scores are computed for each GO term.

Two of them are simple statistics that show how well represented a GO term is, namely
the percentage of interesting genes within each GO term and the percentage of all genes in a
GO term.

The third score is a z-test (see (Lehmann, 1986)) for more details, roughly a standardized
differences test). The reason for applying this test is the following. If two groups (GO terms)
contain the same number of genes, then the term that contains more interesting genes should
be more significant. To account for the different sizes of the groups there is a need to divide
by the standard deviation.

MAPPFinder does not return any p-value (thus no multiple testing correction), the results
being sorted by any of the scores.

GOstat. In this approach the authors point out that GO is a hierarchical structure and un-
derstanding the biological functions involved in an experiment should include the exploration
of this DAG structure. This idea partly motivated our work.

The enrichment of the GO terms is scored using a x? test and Fisher’s exact test. Methods
for p-value adjustment are also available.

Some topological notions like the path of a GO term and splits are defined. The authors
argue that the GO terms from the same path (the splits) are strongly correlated. To ease
the interpretability of the result they propose to cluster the GO terms (by the genes that are
mapped to them), somehow looking for subgraphs in the GO graph that are relevant for the
experiment under study.

GOstats. This software is a package from Bioconductor Projectﬁ. Although no new meth-
ods are proposed, the author points out the challenges that such an analysis poses.

The score for a GO term is computed with a hypergeometric test. Two issues are raised.
The first is the interpretation of the p-values. The author argues that given the strong
dependence between the tested hypotheses there is no clear way in which a multiple testing
correction should be done. The researcher should concentrate more on ‘patterns of p-values
that correspond to structure in the GO graph’ rather than the choice of a cutoff.

2www.bioconductor.org
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The second issue is the number of genes that are mapped to a particular GO term. The
most specific GO terms will have a relatively small number of genes annotated to them and
this will influence the result of the experiment. For example, if a GO term contains 3 genes
and all of them are in the list of interesting genes, then a small p-value is obtained. The
author proposes that only GO terms with a reasonable number of genes should be considered
for the analysis.

Since the analysis is performed in the R environment different types of statistics and
visualizations are possible.

Other methods for the analysis of gene set enrichment were proposed. In (Mootha et al., 2003))
a normalized Kolmogorov-Smirnov test was used for scoring gene sets (pathways, GO terms,
gene clusters). The method of (Breitling et al., 2004)) iteratively compiles gene sets from the
list of differentially expressed genes, based on evidence graphs.

3.1 Remarks

As we have seen in some of the above methods the dependences between the functional
groups - the GO terms - are not taken into account. Of course in tools like Onto-Express
and MAPPFinder in which databases other than Gene Ontology are used this is impossible.

There is one important reason why the DAG structure should be exploited. As we argue
in Section Z3] the hierarchical structure refers to the biological relations between GO terms:
GO terms that are neighbors have similar functions, only that the child is more specific than
its parent. The analysis should try to control the level of specificity. This does not mean that
only GO terms from a particular level, as in FatiGO, should be considered for investigation,
but the result of the analysis should account for it.

The strong correlation between neighboring GO terms can be seen in Figure Bl In the
example from figure the GO terms GO:0043068, GO:0012502 and GO:0006917 are on
the same path. The GO terms GO:0012502 and GO:0006917 have the same genes mapped
to them, so they are identical from this point of view. In this case, when Fisher’s exact
test is employed (or any other of the tests previously mentioned) the same p-value will be
assigned to these terms and thus they are equally relevant. Even if the numbers of genes
that are mapped to these nodes are not exactly equal, as for the GO terms GO:0043068 and
GO:0043065, the resulting p-values are almost equal. In the example from figure there
are four GO terms on the same path (the red ones) with similar numbers of mapped genes,
and thus with similar p-values. This situation will appear quite often in practice and should
be considered in the analysis. By clustering the GO terms, (Beissbarth and Speed, 2004)) try
to account for these dependences.

Another important issue to be addressed is the omission of some genes and some GO
terms. In FatiGO it is not clear what will happen with the genes that are annotated at a GO
level higher than the selected one. Some of these genes can belong to the list of interesting
genes. Not considering GO terms that have few genes, as in (Gentleman, 2004d), one could
leave out some relevant terms. Thus, the analysis should consider all terms and all available
genes.
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Figure 3.1: Ezamples of node dependences. For each GO term the counts and the p-values
are displayed. < x/y > denotes that out of y genes mapped to the node, x belong to the list

of interesting genes.

All methods described above, except (Mootha et al., 2003)), are just looking at simple
gene counts inside the functional group. Some tests that can account for the distribution of
the genes in the functional group, like a Kolmogorov-Smirnov test, can improve the inference.

There is no method that uses different statistical tests. It will be interesting to compare

the results of tests like Fisher’s exact test, z-score and Kolmogorov-Smirnov test.



Chapter 4

Integrating the GO topology

We have seen in the previous chapters, that an important issue is the biological interpretation
of the reported scores - the p-values. It is emphasized that using adjusted p-values, obtained
with various multiple testing correction methods, can improve the statistical interpretation
of the result.

Multiple testing correction. We believe that the main problem is not the multiple testing
correction, even if it is necessary, but it is the test statistic used to compute the significance
of a GO term. Looking at the examples from Figure Bl we see that even after a p-value
adjustment the resulting p-values are equal. A test statistic is needed that considers the
neighborhood of a GO term - its parents and its children - when computing its p-value. By
considering the neighborhood we mean to decorrelate the GO terms such that if a GO term
is reported as significant, then none of its neighboring nodes that have similar counts should
be reported significant. The problem can be seen in Figure in which all four GO terms
are almost identical w.r.t. the number of mapped genes.

The methods presented in this chapter try to augment (enhance) the analysis of the
functional groups - the GO terms - using the graph topology. There are basically two types
of algorithms. In the first type of algorithm some genes from a GO term are removed based
on the significance of its children. The second type of algorithm assigns arbitrary weights to
the genes from a GO term.

For the first type (Section EE2), we present three algorithms, with different levels of com-
plexity.

topo: The idea of the first algorithm is to compute the p-value of a node after all the
genes from its significant children have been removed from it.

elim: In the second algorithm, when a node x is found to be significant, all its genes
are removed from all ancestors of node x. Thus, the ancestors are becoming less
enriched.

readjust: For the third algorithm two p-values are computed for each node. The first p-value
is computed disregarding the neighborhood of the node. The second p-value is
computed in the same way as in topo algorithm, but this time a child is considered
only if its first p-value is smaller than a specified cutoff.

27
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The second type of algorithm generalizes the ideas introduced by the above algorithms

(Section E3]).

weight: The central idea is to associate single genes mapped to a GO term with weights,
denoting their relevance. Then, a modified Fisher’s exact test is employed for the
weighted GO term. The weights for the genes mapped to a GO term are computed
based on the current p-values of the investigated GO term and its neighbors. The
presented algorithm is a template that leaves room for customization, regarding the
choice of the weights, the choice of the strategy in which the weights are spread into
the graph and the way the weights are updated.

Before describing the algorithms in detail, we introduce some definitions and notations.

4.1 Definitions and notations

In the rest of this chapter we present the algorithms that try to solve the problem stated in
Figure [Tl The algorithms are explained using more general notions, since we want to em-
phasize that they work not only for microarray data. Thus we will use the following notions:
The genes are regarded as items, the GO graph is a DAG (directed acyclic graph) and the
GO terms are the nodes in the DAG.

Next we introduce some graph notions. For a review on graph definitions and algorithms
we refer to (Cormen et al., 2003)).

Graphs. We call the roots of a DAG all nodes that have in-degree (the number of edges
entering the node) equal to 0. Since the GO DAG has only a single root we only consider
DAGs with exactly one root. The algorithms also work for DAGs with more than one root.
In Section 2301 we define the notions of child and parent for such graphs. The root is the
only node in the DAG that has no parent. Similarly the nodes that have no children are
called leaves. The edges are thus directed from a parent to a child. For a DAG we can
define the level of a node: The level of a node u is the length of the longest path from the
root to u. Thus, the root is on level 0, its direct children are on level 1 and so on. Note
that we can have leaves on each level (except level 0) and nodes on the same level do not
have any edge between them. The nodes’ levels can be computed easily with a modified BFS
traversal. For a set of nodes U, lower.inducedGraph(if) is defined as the subgraph induced
by all nodes reachable from U. Similarly, we define upper.inducedGraph(if) as the subgraph
induced by all nodes reachable from U if we reverse all edges in the DAG (or equivalently
the graph that contains all paths from root to any node u € ). If U = {u}, then we write
lower.inducedGraph(u). Reversing all edges in a graph is a simple operation. For example,
if the graph is stored in an adjacency matrix, we only have to transpose this matrix. Thus,
both lower.inducedGraph() and upper.inducedGraph() can be obtained fast.

Items. As stated in the problem from Figure [Tl the nodes in the DAG contain items.
items(u) denotes the set of items from node u. Since items(u) is a set, the usual set operations
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are used, e.g. (items(u) \ items(v)) U items(w) denotes the union of the items from node w
with the set difference between the items from nodes w and v. If £ is a list of nodes, then

items(L) = U items(u).

uel

When the union of two or more sets of items is computed, duplicates are removed.

Fisher’s exact test. In our algorithms we use as scoring function for a node u the degree
of independence between the two characteristics: A = {item is in the list of interesting items}
and B = {item is found in node u}. We saw in Section ZZZTl that this is achieved with Fisher’s
exact test. Here we present how the contingency table is formed in our case. Let sigltems
represent the set of the interesting (significant) items, e.g. differentially expressed genes, and
allltems denote the set of all items mapped in the DAG. To build a contingency table as
shown in Table 1], we define for a node u the following;:

items(u) = allltems \ items(u)

sigltems = allltems \ sigltems

= |sigltems Nitems(u)], X = [sigltems N |tems(u)| (4.1)
Y = |items(u) \ sigltems|, Y = [items(u)| — (4.2)
sig items  not sig items sum
items in u X X litems(1)]
items not in u Y Y litems(u)]
sum Isigltems|  |sigltems| | |allltems]

Table 4.1: Items contingency table

The function Fisher.test(items(u), sigltems) is computing a p-value based on the contin-
gency table from Table BTl

Pseudo-Code. The algorithms are presented in pseudo-code. We use general lists as data
structures. For example, nodeSig denotes a list. To access the elements we use the opera-
tor []. Lists can be indexed with nodes from the DAG, e.g. to assign the value to a node u
we write nodeSig[u] <— value. Lists are seen as sets and thus the set operations are used
on them.

Preprocessing. The input of the algorithms are a DAG and two lists of items, namely
the list of all items and the list of interesting items. For each node u, the list of all items
that are mapped to it is given by items(u). The list of all items is denoted by allltems. In
Section B2 we explain how the DAG and the two list of items (genes) are obtained using the
Gene Ontology and a microarray experiment.
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The classic algorithm

With all these steps done, the classical approach in which each node is tested separately
for significance (see Chapter Bl) can be summarized in Algorithm [l We call this algorithm
classic.

Algorithm 0 classic

1 nodeSig <0

2 for x in nodes(DAG)

3 nodeSig[x] < Fisher.test(items(x), sigItems)
4 end

5 return modeSig

After the p-value is computed for each node in lines 2-4, different multiple testing correc-
tions can be employed. In the rest of this chapter we assume that the p-value adjustment is
done by the function Fisher.test(-,-), if necessary.

4.2 Eliminating items

In Algorithm [ the significance of a node is computed independently of the significance of the
neighboring nodes. Our belief is that the neighborhood of a node influences the significance
of the node. Since in the GO graph the children of a node are more specific than the parent,
the idea is to compute the significance of a node considering the significance of its children.

4.2.1 The topo algorithm

Here we directly implement this idea. Figure EETlshows the children of a node x together with
their p-values. If we consider a level 0.01 test, then only x.ch[2] is considered significant.

Figure 4.1: The adjusted p-values for the children of node x. The red node is the only
significant child of node x.

Node x.ch[2] is enriched with interesting items, since it is significant. Given the items
dependences between a parent node and its child, all items from node x.ch[2] are also found
in node x. Thus, the significance of node x.ch|[2] influences the enrichment of node x. We
want to know how enriched the parent is if we do not consider the items from its significant
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children. If node x is found significant even after the items from node x.ch[2] are removed
from it, then it is clear that node x also represents the list of interesting items (the biological
function represented by the GO term x is more relevant for the experiment under study),
independent of the more specific child x.ch[2].

Algorithm 1 topo
1 sigNodes.LookUP <
2 nodeSig < 0
3 get the DAG levels list DAG.level
4 for i from max(DAG.level) to 1
5 currNodes <— DAG.levelli]

for x in currNodes

sigCh < sigNodes.LookUP[x.ch]

6

7 x.ch < children(x)

8

9 items(x) < (items(x) \ items(sigCh)) U items(x.ch \ sigCh)

10 nodeSig[x] < Fisher.test(items(x), sigltems)
11 if nodeSig[x] < cutOff then

12 add x to sigNodes.LookUP

13 fi

1 end

15 end

16 return modeSig

The pseudo-code for algorithm topo is shown in Algorithm [ In line 1 a lookup table that
keeps the significant nodes is initialized. Similarly, in line 2 the list for storing the p-values
of all nodes is initialized. Since we need to compute the significance of the children before
computing the significance of the parent node itself, we need to start with the nodes on the
first level. The DAG.level list computed in line 3 is used to address this task. DAG.level[i]
contains all nodes from level 1 in the DAG. max(DAG.level) gives the maximum level in the
DAG. As stated in Section ETl there is no parent-child relation between nodes on the same
level. Thus, we can start from the lowest level and independently compute the significance
of the nodes in this level. Then iteratively we decrease the level. This is done by the loop in
lines 4-15.

In line 5 all nodes from level i are selected. Then, each of them is sequentially processed
in lines 6-14. For each node x its children are selected, and the list of significant children
sigCh is computed. Then, the items from sigCh are removed from node x. It can happen,
due to the structure of the GO graph, that some items in sigCh are also found in other
not-significant children. We do not want to remove these items from x since they can come
from different most specific nodes (nodes where the items are originally mapped). Thus,
after having removed items from sigCh we add all the items from all other children, see
line 9. Then Fisher’s exact test is employed for computing the p-value of node x. Based on
this p-value we decide if node x is significant or not. Here we can use the simple Bonferroni
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adjustment of p-values. If the node is found significant then it is added to sigNodes.LookUP
list. After finishing level i1 we move to nodes from level 1 — 1.

The algorithm returns the list with the nodes’ significance. This algorithm is linear in
the number of nodes and edges of the DAG: For each node we look at its children, thus we
access each edge only once.

4.2.2 The elim algorithm

In the topo algorithm we only consider the children of a node when its p-value is computed.
The problem with this approach is that it does not account for a larger neighborhood. All
the knowledge about the children’s neighborhood or the nodes from the lower levels is not
used. Using the current p-value of a child to determine if the items from this child should be
removed from the parent node can be misleading.

Algorithm 2 elim
1 sigNodes.LookUP < ()
2 elimItems.LookUP < ()
3 nodeSig < 0
4 get the levels list DAG.level
5 for 1 from max(DAG.level) to 1
6 currNodes < DAG.level[i]

7 for x in currNodes

8 items(x) < items(x) \ elimItems.LookUP[x]
9 nodeSig[x] < Fisher.test(items(x), sigItems)
10 if nodeSig[x] < cutOff then
11 add x to sigNodes.LookUP
12 for u in upper.inducedGraph(x)
138 elimltems.LookUP[u] < elimItems.LookUP[u] @ items(x)
1 end
15 fi
16 end
17 end

18 return modeSig

The idea of the elim algorithm is to remove items of a significant node from all its ancestors.
This is a quite radical approach since nodes at the lower levels (GO terms that are more
specific) will be reported as significant; their ancestors will loose significance. This approach
works well for the example in Section Bl

The pseudo-code that implements this idea is shown in Algorithm Bl In the first lines we
initialize the lists. The elimItems.LookUP list is used for storing for each node x the list of
items that should be removed when it is investigated. The nodes are processed in the same
way as in Algorithm [l Each node x from level 1 is processed in lines 7-16. We know from
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previously processed nodes (also its children) which items we should remove from node x, see
line 8. Based on the p-value computed with Fisher’s exact test node x is declared significant,
and if so, we remove items(x) from all its ancestors. This is done in lines 12-14. All the
ancestors of node x are nodes in upper.inducedGraph(x). The @ operation from line 13 means
in the general case union, but other operations can be used.

Since we need to access the nodes form upper.inducedGraph(x) for some nodes x, this
algorithm is quadratic in the number of nodes of the DAG in the worst case.

4.2.3 The readjust algorithm

Another way to address the problem that motivated the elim algorithm is to compute two
p-values for each node.

In the topo algorithm, the items from the significant children are eliminated from the
parent node x. Assume that a node x is found non-significant after this operation. When
one parent of node x is processed, the items from node x are not removed, since x is a
non-significant child. Thus the significance of its parent is artificially increased.

Algorithm 3 readjust

1 classic.nodeSig < classic()

for x in nodes(DAG)
if classic.nodeSig[x] < cutOff then
add x to sigNodes.LookUP

end

nodeSig <0

get the levels list DAG.level

for i from max(DAG.level) to 1
10 currNodes < DAG.level[i]

2
3
4
5 fi
6
7
8
9

11 for x in currNodes

12 x.ch < children(x)

138 sigCh < sigNodes.LookUP(x.ch)

1 items(x) < (items(x) \ items(sigCh)) U items(x.ch \ sigCh)
15 nodeSig[x] < Fisher.test(items(x), sigItems)

16 end

17 end

18 return modeSig

In Algorithm B the pseudo-code for solving this problem is shown. For each node x two
p-values are computed. The first p-value is independent of the neighborhood of node x. This
p-value tells if node x was significant or not before accounting for the topology. Thus it acts
as a memory. The second p-value depends on the children and gives the final significance of
a node. The same elimination of the items as in the topo algorithm is used, but this time we
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use the first p-values in the computation. A child of node x is significant if its first p-value
is less than a specified cutoff. In this way we better control the way items are removed from
node x.

The first p-values are computed using the classic algorithm. Having the p-values for all
nodes computed, different multiple testing adjustment procedures can be employed. Thus
the cutoff is more robust. Computing the list of significant nodes is done in lines 1-6. We
assume the classic() procedure returns adjusted p-values.

The rest of the algorithm is almost identical to algorithm topo, see Algorithm [l By re-
moving items from a node the p-value typically increases. Thus, there is no need to add nodes
to sigNodes.LookUP list, see lines 11-13 in Algorithm [l The running time of the readjust
algorithm is linear. It is essentially the same as the running time of the topo algorithm, since
the classic() procedure is linear in the number of nodes.

4.3 Weighting items

In the previous section we account for the correlation between nodes by removing items from
them. Removing items from a node can be seen as a weighting of the items with weights
equal to either 0 or 1. In this section we generalize to arbitrary weights. Using arbitrary
weights the elimination of items is smoother.

Briefly, the weight algorithm works as follows. We want to decide if a node x is better
representing the interesting items than any other node from its neighborhood. To do this,
we look at its children and we compare its p-value with the p-values of its children. If there
are children that have a p-value less than node x than we decide that these children better
represent the interesting items. Let sig.children denote the set of these children. Then we
should report as significant nodes from sig.children and not node x. To do this we down-
weight the items that are mapped to the sig.children in node x and in all ancestors of node
x. Down-weighting means that the weighted items will contribute less when computing the
p-value for the weighted group.

The children that have a p-value above the p-value of node x should not be reported as
significant. To achieve this, all the items from these children are down-weighted. The reason
is similar to the one presented above: All the items mapped to the children are found in node
x and since we ‘decided’ that node x better represents the interesting items, we want these
items to contribute less in the children’s p-values.

Three issues need to be addressed. First, for scoring of a node, Fisher’s exact test needs
integer quantities, but by assigning arbitrary weights to the items, non-integer numbers can
occur in the contingency table. The second issue is the way in which the items should be
weighted. The last issue is the order in which the children of a node should be processed.

4.3.1 Scoring weighted groups

In the beginning all items have weight 1. The weights that are assigned to items during the
run of the algorithm lie in the interval [0, 1]. For scoring a group we apply Fisher’s exact
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test on a weighted contingency table built in the following way. The quantity X (the number
of significant items that are mapped to node u in Table BTl) is computed by summing up the
items’ weights followed by rounding up to the next integer.

X = > weight[i] | . (4.3)

ie{sigltems N items(u)}

Similarly, all the quantities of the contingency table shown in Table EEl are computed by
summing up the weights and rounding up of the items from each set. Here, we are replacing
the cardinality function |S| with the function {Zie S Weight[iﬂ. We consider the weighted
contingency table as a transformation of the table in which all weights are equal to 1. The
idea here is to first decorrelate the nodes by giving weights to their items and then apply
Fisher’s exact test on the decorrelated nodes. Note that the quantity in equation [E3) is
always less than the quantity in equation ([J]). On the other hand, the smallest value for the
quantity in equation (3] is obtained when all weights are either 0 or 1. This is the case for
all algorithms presented in Section E2 Thus by using weights from the interval [0, 1] we are
between the classical approach and the elimination approach. The function WFisher.test(-, -, )
is used for scoring a group of items.

4.3.2 Weights computation

The weights for a group of items are computed in the following way. Let x be the node that
is currently processed and let x.ch be a child of x. Then we define the weight of this pair of
nodes by

w = sigRatio(sig(x.ch), sig(x)), (4.4)

where sig(x) denotes the ‘significance’ of node x. This can be either the p-value or the value
of the test statistic. Typically, we use the p-value returned by Fisher’s exact test. The
function sigRatio(-,-) is a ratio function of the form

sigRatio(a,b) = ];E—E; or sigRatio(a,b) =" <%> . (4.5)
The form of the function sigRatio(-,-) depends on the function sig(-). When sig(-) denotes
the p-value, the first form is preferred. The function f(-) is an increasing function and it
is chosen depending on the degree of desired weighting of the two nodes. The main idea
behind this formula is that we want to obtain a number smaller than 1 if the child x.ch is
less significant than its parent x.

4.3.3 The weight algorithm

The main body of the algorithm is presented in Algorithm Hl

In lines 1-4 we assign the weight 1 to all items. Each node is associated with the weights for
its items. We use two lists: downNodes.LookUp stores for each node that has been visited
the weights of the items mapped to it, and upNodes.LookUp stores the items’ weights for
the ancestors of visited nodes; these are nodes that have not been processed until now. We
could also use only a single list that stores the items’ weights for each node, but having two
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Algorithm 4 weight (part I)

function main()
1 for u in nodes(DAG)

2 upNodes.LookUP[u] <1
downNodes.LookUP[u] <1

3
4 end

5 nodeSig <

6 get the levels list DAG.level

7 for i from max(DAG.level) to 1

8 currNodes <— DAG.levelli]

9 for node in currNodes

10 computeTermSig(node, children(node))
11 end

12 end

13 return  modeSig

lists gives us more flexibility. For each list we can have different strategies of updating the
weights.

Similar to the algorithms presented in the previous section we process the nodes bottom-
up level by level, see lines 7-12. The core of this algorithm is the function computeTermSig(-, -)
whose pseudo-code is shown in Algorithm Bl

computeTermSig(-,-) is a recursive function. We start with all children of the currently
processed node x, see line 10 in Algorithm Hl Some of the children are eliminated and in the
next call of the function we recurse on the remaining children, see line 20. The children that
are considered by the computeTermSig(-,-) function in each call are denoted active children.
We finish processing node x, when there are no more active children. We take care of this in
line 3.

In line 1 the weights of node x are obtained. Based on these weights a weighted contin-
gency table is computed and Fisher’s exact test is employed, see line 2. Thus, the p-value for
node x is computed each time the computeTermSig(-,-) function is called. The reason is that
the items’ weights for node x were updated during the previous run of the function.

At this point nodeSig[x] holds the temporary p-value of node x. This p-value can be mod-
ified when a parent or an ancestor on node x is processed (by the function recomputeSig(x)).
In lines 4-6 the weights for node x and each active child are computed, see Section
Based on these weights we split the active children in two sets, namely children that are
more significant than node x, denoted by sig.children, and children that are less significant
than node x. The children in the second set will later become the new active children. The
splitting is done in line 7. The idea behind such a splitting is the following: Children that
have a p-value less than node x (we say that the children are more ‘significant’ than the
parent) should be considered local optima (w.r.t. the node significance). To emphasize this
the p-value of their parents and their ancestors is increased. This is done by weighting the
items from the parents and from the ancestors with the computed weights. The children that
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Algorithm 5 weight (part II)

function computeTermSig(x, children)
1 itemsWeight <— upNodes.LookUPIx]

2 nodeSig[x] < WFisher.test(items(x), sigltems, itemsWeight)

g if children = () then return fi

4 for ch in children

5 weights[ch] < sigRatio(nodeSig[ch], nodeSig[x])

6 end

7 sig.children < {ch | weights[ch] > 1,ch € children}

s if sig.children = () then /¥ CASE 1 */
9 for chin children
10 downNodes.LookUP[ch] <— downNodes.LookUP[ch] & weights[ch]

11 recomputeSig(ch)
12 end

13 return

14 fi

15 for ch in sig.children /* CASE 2 */
16 for w in upper.inducedGraph(x)

17 upNodes.LookUP[w] < upNodes.LookUP[w] & m

18 end

19 end

20 computeTermSig(x, (children \ sig.children))

function recomputeSig(x)
1 itemsWeight <— downNodes.LookUPIx]

2 nodeSig[x] < WFisher.test(items(x), sigltems, itemsWeight)
s return modeSig

have p-values greater than node x should be investigated after the new p-value of node x is
recomputed (due to the updates in the weights). Two cases are considered.

In CASE I, lines 9-13, there are no active children that have a p-value smaller than node
X, thus node x is a local optimum. One strategy here is to increase the p-value of the active
children even more, since the aim is to find the nodes that best represent a particular area in
the graph. Thus, we update the old weights of these children with the new weights. Given
the DAG structure, a node for which weights need to be updated can already have weights
assigned to it by another parent that was processed before node x. The assignment in line
10 is addressing this problem. Different vector operators @ can be used here, for example a
function that returns the minimum on the components or a function that returns the product
on the components. After the weights are updated, the p-value of the child is recomputed.
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This is done by the function recomputeSig(ch). Again, here we can use different strategies.
A simple example is just to recompute the p-value of node ch. In a more general case, all
nodes in lower.inducedGraph(ch) can be revisited and their p-values can be adjusted. After
the weights for all the active children are updated, the processing of node x is finished.

In CASE II, there are some children that are more significant than node x, thus these
children represent local optima. Similar to the approach taken in the elim algorithm we want
to weight the items in upper.inducedGraph(x). By doing this, their items will count less when
the ancestors of node x, including node x, are scored, thus increasing those p-values. Observe
that we do not weight the ancestors of the processed child ch, but the ancestors of node x,
line 15. We do not know what the relation between the p-values of node ch and a parent of
node is. The operator @ from line 17 is similar to the one from line 10. The difference is that
the two sets on which it operates have different cardinality. After all nodes from sig.children
are processed, the items’ weights of node x have been updated.

At this point the nodes processed in CASE II are removed from the list of active nodes.
Note that the newly active nodes are nodes that have not been processed. The function
computeTermSig(+, -) is called for these nodes in line 20.

The running time of the algorithm depends on the function recomputeSig(ch). With the
function presented in Algorithm B, which requires constant time, the running time of the
weight algorithm is quadratic in the worst case. This is the case because the updating of the
weights described in lines 15-19 can be done after having finished processing node x.



Chapter 5

Implementation and experiments

In this chapter we give some implementation details necessary for a better understanding of

the experiments. The evaluation of the algorithms consists of a study based on real data and

a study based on simulated data. For both studies the advantages and the disadvantages of

each algorithm are discussed. We also present some ideas regarding the visualization of the
results.

The algorithms were implemented using the R programing language (Gentleman and lhaka, 1990)).

This choose is motivated by the large amount of statistical and visualization software pack-

ages available for this language. On the other hand, the Bioconductor Projectﬂ provides
software infrastructure for working with biological data.

5.1 The ALL dataset

For running our methods on a real microarray expression data we choose ALL (Acute Lym-
phoblastic Leukemia) dataset from the Ritz Laboratory.

This dataset was extensively studied in (Golub et al., 1999; |Chiaretti et al., 2004} von Heydebreck et
|Gentleman, 2004c)), thus we can compare our results with the results published. The dataset
is available in R, as a Bioconductor package.

The dataset was introduced in (Chiaretti et al., 2004)). The gene expression matrix is
already normalized with quantile normalization, and the expression estimates are computed
using RMA ([rizarry et al., 2003]). The data is presented in the form of an ‘exprSet’ object.

The ALL data consists of microarrays from 128 different patients with Acute Lym-
phoblastic Leukemia. On each microarray there are 12625 probes. Different probes can code
for the same gene. This many-to-one mapping of the probes to gene identifiers, in our case
LocusLink identifiers, needs in general some form of adjustment for a correct inference. On
the other side probes that code for the same gene can measure different things. Thus, it is
not clear if the duplicates should be removed. For our experiments we choose not to remove
the duplicates. Given this, in the rest of this chapter we refer to the probes as genes.

1 .
www.bioconductor.org
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Differentially expressed genes. The first step in analyzing the data is to determine the
differentially expressed genes. We showed in Section EZZT] that this can be achieved with a
two sided t-test. We choose two ways for discriminating between patients.

Setup 1: It is known that the ALL cells are delivered from either B-cell or T-cell precursors.
We split the patients according to the type and stage of the disease: There are 95
patients with B-cell ALL and 33 patients with T-cell ALL.

Applying a two sided t-test for these groups, we obtain the raw p-values. As dis-
cussed in Section we need to account for multiple testing. Adjusting the
p-values using the Bonferroni method we obtained 540 differentially expressed genes
for a level o = 0.01 test. Controlling the false discovery rate with the method from
(Benjamini and Yekutieli, 2001]) gives us 915 differentially expressed genes.

Setup 2: A more interesting study is the comparison within B-cell ALL patients. From 95
B-cell ALL patients we can find 37 patients with BCR/ABL (fusion gene that re-
sult from a translocation of the chromosomes 9 and 22) and 42 patients that are
cytogenetically normal, the NEG group.

Using the Bonferroni method to adjust the raw p-values obtained with the two sided
t-test, 10 differentially expressed genes are obtained for a level o = 0.01 test. For a
level & = 0.05 we obtain 9 additional genes. Using the (Benjamini and Yekutieli, 2001))
adjustment method for controlling the false discovery rate we obtain 16 differen-
tially expressed genes for a level o« = 0.01 and 28 differentially expressed genes for
o = 0.05.

The list of differentially expressed genes will be referred to as the list of interesting genes
in the rest of this chapter.

For mapping the gene set from the ALL data we need the annotation for the Affymetrix
chip HGU95aV2, that was used for these studies (Chiaretti et al., 2004). The hgu95av2
Bioconductor package provides information about the genes found on this chip. It includes
LocusLink identifiers, gene names, Unigene cluster identifiers, pathway associations and also
information about the GO classification. All the mappings can be found using the function
hgu95av2() from this package.

The mappings between the genes and the corresponding GO term (GO identifier) are
stored in the hgu95av2GO environment. Each gene is mapped to a list containing one or
more GO terms. Each such element (if the list is not empty) contains a sublist with three
named elements:

GOID: gives the Gene Ontology term

Ontology: is one of the three biological areas: MF for molecular function, BP for bio-
logical process and CC for cellular component.

Evidence: contains the evidence code that supports the association of the GO term to
the gene found on the array, see Section Z311
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5.2 Implementation

In this section we give short implementation details. We focus on preprocessing steps and
visualization issues. The preprocessing of the data can be summarized in the following steps.

Step 1: Selecting the ontology. The first step is the selection of the ontology to be used.
As discussed in Section L3l there are three distinct ontologies: molecular function (MF),
biological process (BP) and cellular component (CC). The experiments in this chapter were
done for the BP ontology.

The Bioconductor package GO (Gentleman, 2004al) provides these ontologies. All the GO
terms from the selected ontology are retrieved for further use.

Step 2: Obtaining the list of all genes. The microarray dataset is processed here. In
the case of the ALL dataset all the data are stored into an exzprSet R object. For the use of
other datasets first such an object must be formed before further analysis.

The genes found on the microarray are selected. Using Bioconductor packages different
filters can be applied to reduce the set of genes. Also in this step the multiplicities between
microarray probes and gene identifiers can be removed if required. After the list of genes to
be analyzed is set, the mapping to the GO terms is performed, see Section 3Tl The genes
that can not be mapped to the available GO terms are discarded. This can happen either
because there is no GO term in the selected ontology to which the respective gene can be
annotated, or the ontologies are incomplete. In our studies we could map 9623 from a total
of 12625 genes to the GO terms from the BP ontology. The list of genes obtained is the list
of all genes.

Step 3: Obtaining the list of interesting genes. Next the list of interesting genes is
computed. This list can be given as a predefined list of genes or can be computed from the
microarray data. For the experiments involving the ALL dataset the differentially expressed
genes form the list of interesting genes, see Section Il Different test statistics and different
multiple testing correction for finding differentially expressed genes can be employed. We
use the multtest package (Dudoit and Yang, 2003; |Ge et al., 2003|) from Bioconductor. The
package also offers several types of analysis for determining the set of interesting genes.

Step 4: Building the DAG structure. The GO terms obtained by mapping all genes
to the selected ontology are only the most specific GO terms. In Section Bl we argue that
all GO terms with at least one annotated gene to them should be analyzed. Thus, we must
map the genes to all ancestors of specific GO terms.

The GO package keeps the graph structure of the ontologies in environments (an environ-
ment is a data-structure similar to a list from a user point of view). This type of encoding
the DAG structure is cumbersome if graph specific operations are needed. Another issue
is the visualization of the graph topology. To overcome these problems we use the graph
package from Bioconductor, see (Gentleman and Whalen, 2004]). This package offers basic
data-structures for graphs and basic functions for working with them. In addition, there are
packages like RBGL and Rgraphviz which offer complex functionalities based on the graph
package.
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Starting from the most specific GO terms the DAG structure of the GO is constructed.
All added nodes are ancestors of the most specific nodes with respect to the GO relations,
see Section EZ3 Tl Note that given the complexity of the GO DAG and the way the genes
are annotated to the GO terms, the most specific GO terms are not necessarily leaves in this
graph. The root node of this graph is the root of the specified ontology. For computational
reasons two graphs are computed. The first graph has the edges directed from the root to
the leaves. The second one has the edges directed from the leaves to the root. In this way
accessing the parents and the children of a node is easier. At this point all the knowledge
of the GO is embedded in these two graphs. Only these two graphs are used in the further
analysis.

To map the genes to all GO terms (nodes), the genes from the leaves are pushed up the
DAG to the ancestors of the specific nodes. After this step all the nodes in the DAG contain
all the genes that can be mapped to them. For example the root of the DAG contains all genes.

After all these preprocessing steps, each of the algorithms presented in Chapter H can
be used. Input for all algorithms are the list of interesting genes and the graphs. For each
algorithm there is a list of parameters that need to be set.

Multiple functions for analyzing the obtained DAG and the result of the algorithms are
available. For each node in the graph (each GO term) the counts of the mapped genes and of
the interesting genes, the contingency table used for Fisher’s exact test, the expected number
of genes for the respected node and other information can be obtained.

5.2.1 Visualizing graphs

One main tool for analyzing the results, is the visualization of the graph topology. To plot
graphs we used the package Rgraphviz (Gentry, 2004)) from Bioconductor. This package is an
R interface for the AT&T GraphViz libraru, thus having all the facilities that the GraphViz
library offers.

Since the GO DAG is large, comprising 2311 nodes and 3525 edges for the BP ontol-
ogy and the genes from the ALL dataset, plotting only parts of it (subgraphs) is desired.
Keeping the GO DAG structure into a graph object makes plotting of the DAG or parts of
it easier. Of particular interest are the subgraphs induced by some significant nodes. We
defined in Section BTl the upper.inducedGraph(U) and the lower.inducedGraph(U) for a list U
of nodes. These subgraphs can easily be obtained with the functions from the graph package.
By plotting these subgraphs more insight into node x can be obtained.

In Figure BTl we plotted the upper.inducedGraph(GO:0019882). Different types of infor-
mation can be displayed for each node. Since usually there is no room left to label the nodes
of the DAG with all the available information, we plot the same graph twice, where each plot
gives a particular type of information. In Figure BTl there are two types of node shapes. We
plotted the node GO:0019882 using a box shape to emphasize it. Nodes that are of particular
interest are plotted using a box shape or any other shape preferred by the user. The edges
of the graph are colored with two colors. The black edges denote ‘s a’ relationships between
the nodes and the red edges denote ‘part of’ relationships, see Section Z3T1l In Figure BTl
all edges represent an ‘is a’ relationships.

*http://www.research.att.com/sw/tools/graphviz/
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Figure 5.1: Ezample of the subgraph induced by node GO:0019882. All paths from the root to
this node are plotted. In figure (a) the counts for each node are displayed: x/y denotes that
out of y genes mapped to the node, x belong to the list of interesting genes. In figure (b) the
p-value of the node is displayed.

To better understand the dependences between the nodes in the DAG, the nodes are
colored with different intensities (from dark red to light yellow) depending on their p-value.
A node with a low p-value will be colored dark red. The non-significant nodes, p-values close
to 1, will be almost white. This type of coloring is useful for finding the interesting patterns
in the DAG and detecting dependences induced by the parent-child relationships.

Figure shows the lower.inducedGraph(G0:0019882). For a specified node it is possible
to plot all ancestors not further than three levels and all children not further than two levels
from this node, for example. Also all ancestors and children of a node or of a set of nodes
can be plotted if required.

Another available type of labeling the nodes inspired from (Gentleman, 2004d)) is shown in
Figure The nodes are plotted as pie charts showing the ratio of the observed interesting
genes and the total number of genes mapped to a node. Similar to the other plots, the nodes
that are of particular interest can be distinguished by the coloring.
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Figure 5.2: The lower induced subgraphs for node GO:0019882

sig
all
sig(wanted)
all(wanted)

Figure 5.3: Fxample of a pie plot

We believe that such plots are improving the understanding of the analyzed data. In the
next section we use these plots to discuss the results obtained by running the algorithms
presented in Chapter Bl on the ALL data.
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5.3 Comparing the algorithms on the ALL dataset

In this section we compare the results obtained by running the algorithms presented in
Chapter Bl on the two setups described in Section Bl The preprocessing steps are performed
as described in Section Unless specified differently, the values stated there are the ones
used.

For both setups we compare the following algorithms (Fisher’s exact test is used for
computing the p-values for each algorithm):

classic.f: This is the algorithm in which each GO term is tested independently of the
others, see Algorithm [

topo: This is Algorithm [l The cutOff parameter is set to 0.01.
elim: This is Algorithm 21 We use the same cutOff 0.01.

readjust: This is Algorithm Bl The p-values obtained with the classical algorithm are
adjusted using the (Benjamini and Hochberg, 1995)) false discovery rate pro-
cedure. The level of the test was set to 0.05.

weight:  This is Algorithm Bl The algorithm is using the recomputeSig(-) procedure pre-
sented in Algorithm B The lists upNodes.LookUP and downNodes.LookUP
refer to the same list. The choice of the weighting function is discussed later
in the section.

classic.z: This is the same algorithm as classic.f, but a z-test is used instead of Fisher’s
exact test.

all.M: This is a combination of all the above algorithms except classic.z. As p-value
the mean of the p-values of all other algorithms is computed using a log scale.
If p.val is the vector of all the p-values for a GO term, then the new p-value
is defined by
p = exp(log(p.val)).

5.3.1 Setup 1: Comparison of B-cell ALL and T-cell ALL.

For the first test we choose as interesting genes the first 540 genes ordered by the t-test
p-values, see Section Bl The ontology used is the BP ontology, see Section 2311 For this
ontology we obtain 2311 GO terms that must be investigated.

The p-values reported for all algorithm are adjusted p-values using the (Benjamini and Yekutieli, 200
false discovery rate procedure. The results are presented in Table BRIl

The GO terms shown in Table Bl are sorted by their p-values computed with the classic.f
algorithm. Since a multiple testing adjustment is employed, we pick all the GO terms with
an adjusted p-value less than 0.05. Table shows the number of significant GO terms for
different level o tests.

Table B3 gives more information on the significant GO terms, namely the name of the GO
term, the total number of genes that can be mapped to the GO term (column ‘Annotated’)
and the number of interesting genes mapped to the GO term (column ‘Observed’). To obtain
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GO ID classic.f  topo elim readjust  weight classic.z  all.M
1 GO:0006952 6.1e—15 0.572 1.000 0.9 1.0e—11 2.6e—21 1.5e—05
2  GO:0006955 2.0e—13 4.1e—13 5.9e—09 4.4e—08 9.3e—09 4.7e—19 3.2e—10
3  GO:0009607 2.4e—12 3.6e—12 1.000 1.0 9.3e—07 1.3e—16 1.9e—05
4  GO:0019882 1.2e—10 0.572 0.647 1.0 2.5e—10 4.4e—30 0.00062
5 GO:0030333 4.2e—10 0.572 0.647 1.0 3.5e—10 4.2e—28 0.00083
6 GO:0019884 4.1e—09 8.2e—09 1.2e—08 2.5e—08 3.0e—06 7.4e—30 4.6e—08
7 GO:0019886 3.2e—08 5.7e—08 7.6e—08 7.6e—08 9.9¢e—05 4.7e—26 3.8¢—07
8 GO:0009605 3.2e—05 1.000 1.000 1.0 0.0020 2.4e—06 0.92887
9 GO:0050874 0.012 1.000 1.000 1.0 0.0071 0.0020 1.00000
10 GO:0016126 0.019 0.036 0.047 1.0 0.0187 4.4e—07 0.11467
11 GO:0050896 0.020 0.036 1.000 1.0 0.0726 0.0041 0.87163
Table 5.1: The significant GO terms at a level o« = 0.05.
level & | classic.f topo elim readjust weight classic.z all.M

0.01 8 4 3 3 9 68 7

0.05 11 6 4 3 10 83 7

0.1 12 6 4 3 11 90 7

Table 5.2: The number of significant GO terms for different levels of the test.

a better idea of how many interesting genes should be mapped to a GO term in a random

case, we compute this number in the column ‘Expected’, as

expected = #all mapped X

#all interesting

#all genes
GO ID Term Observed Expected Annotated
1 GO:0006952 defense response 112 46.913 836
2 GO:0006955 immune response 102 42.816 763
3 GO:0009607 response to biotic stimul... 116 54.264 967
4 GO:0019882 antigen presentation 17 1.683 30
5 GO:0030333 antigen processing 17 1.796 32
6 GO:0019884 antigen presentation, exo... 12 0.898 16
7  GO:0019886 antigen processing, exoge... 12 1.01 18
8 GO:0009605 response to external stim... 127 79.235 1412
9 GO:0050874 organismal physiological ... 129 89.897 1602
10 GO:0016126 sterol biosynthesis 9 1.515 27
11 GO:0050896 response to stimulus 137 98.146 1749

Table 5.3: Some statistics for the significant GO terms

We can see that the results of the algorithms are quite different. Some GO terms that
are found significant by the classical method are completely discarded by other methods. For
example GO:0006952 is reported as non-significant by the methods topo, elim and readjust,
but it is significant for the others. Another example is the term GO:0050874 which is found
significant only by the algorithms classic.f and weight. Even the z-test for this term is not ‘so
significant’, considering the number of GO terms with a p-value less than 0.05, see Table
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The GO terms GO:0019884 and GO:0019886 which are reported significant by all algo-
rithms are leaves in the GO DAG. They are the smallest GO terms w.r.t. the number of
genes mapped to them, see Table In fact, for this setup the GO terms found to be
significant have considerably large numbers of mapped genes. Among all GO terms with
an adjusted p-value smaller than 1, the GO term GO:0009595 containing 11 genes has the
smallest number of genes. Thus the issue regarding a minimal necessary size for GO terms
raised in (Gentleman, 2004d|) is not relevant in this case.
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Figure 5.4: The distribution of the p-values without taking into account the topology: Fisher’s
exact test (a) and z-test (b).

By looking at the p-values and the number of significant GO terms for a specified level & we
see that there is a significant difference between Fisher’s exact test and the z-test. Figure B4
shows the distribution of the adjusted p-values for these two tests.

For the z-test 68 GO terms have a p-value below 0.01, which is a relatively high num-
ber of terms especially after p-value adjustment. Moreover, we see that specific terms like
G0:0019884 and GO:0019886, are very significant. Figure .l better illustrates this behavior.
Some GO terms are found significant by a z-score but not by Fisher’s exact test. For example
node GO:0009164 is ranked 34 with an adjusted p-value of 1 by classic.f and is ranked 10
with an adjusted p-vale of 6.36e-06 by classic.z.

classic.f topo elim readjust weight classic.z allM
classic.f | 1.000  0.920 0.830 0.602 0.814 0.502  0.769
topo | 0.920  1.000 0.908 0.697 0.688 0.474  0.756
elim | 0.830  0.908 1.000 0.785 0.565 0.439  0.688
readjust | 0.602  0.697 0.785 1.000 0.568 0.289  0.691
weight | 0.814  0.688 0.565 0.568 1.000 0.349  0.879
classic.z | 0.502  0.474 0.439 0.289 0.349 1.000  0.338
allLM | 0.769  0.756 0.688 0.691 0.879 0.338 1.000

Table 5.4: The correlation between the resulted p-values.
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Table B4l gives the correlation between adjusted p-values for all methods. We see that
the classic.z method is less correlated with the others. This behavior is partially explained
by the values in Table B2} the adjusted p-values reported by a z-test are lower than the ones
obtained with Fisher’s exact test.

There are a few issues with the results from Table B4l A large number (almost 90%) of
GO terms have an adjusted p-value equal to 1. Even for the raw p-values, more than half
of the GO terms have a p-value equal to 1. Thus taking into account these GO terms can
be misleading. Another issue is that we are more interested in the order in which important
GO terms are reported by each method. To overcome these issues we compute (Table EX) a
rank correlation on a subset of interesting GO terms, see (Lehmann, 1986)) for more details
on rank correlation.

classic.f topo elim readjust weight classic.z all.M
classic.f 1.000 0.374 0.156  —0.070 —0.036 0.802 0.979
topo 0.374 1.000 0.677 0.292 —0.073 0.339 0.362
elim 0.156 0.677 1.000 0.202 —0.105 0.191 0.131
readjust | —0.070 0.292 0.202 1.000  —0.002 0.066 —0.080
weight | —0.036 —0.073 —0.105  —0.002 1.000 0.037 0.052
classic.z 0.802 0.339 0.191 0.066 0.037 1.000 0.722
all.M 0.979 0.362 0.131  —0.080 0.052 0.722 1.000

Table 5.5: Rank correlation for a sample of significant GO terms.

The subset of GO terms was compiled in the following way. For each method we retrieve
the 100 most significant GO terms. Then we define the union set of all resulting GO terms.
In our case we obtain a set of 147 distinct GO terms. For these terms we retrieve the raw
p-values assigned by each method. The result is a matrix with 7 columns, one column for
each method, and 147 rows. The rank correlation for this matrix is shown in Table

The first observation is that on this subset of GO terms the weight algorithm is almost
uncorrelated with all other methods. Especially there is no correlation with all.M, the average
of all the methods that use Fisher’s exact test. This contrasts with the result from Table (2]
in which these two methods are highly correlated. Similar behavior is found for readjust, but
in this case there is some correlation with topo and elim. Finally we note that there is a
strong correlation between the z-test and Fisher’s exact test and the most correlated method
with classic.f is all.M, for this set of GO terms.

The weighting function used in the weight algorithm is the ratio of the log of the p-values.
If a and b are two nodes in the DAG then we have

sigRatioL(a,b) = %‘

Beside this weighting function we test two other versions. The first is the simple ratio

defined by
sig(b)

sig(a)’
The reason of dividing the significance of node b by the significance of node a is explained
in Section The second function is a variant of sigRatio(a,b) in which the significance

sigRatio(a,b) =
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values are considered equal if their difference is smaller than a predefined value €. Here, we
use as threshold e = 107%. We call this weighting function sigRatio.weak.

GO ID classic.f  weight.log weight.ratio weight.weak
1 GO:0006952 6.1le—15 1.0e—11 5.4e—12 5.4e—12
2 GO:0006955 2.0e—13 9.3e—09 1.000 1.6e—10
3 GO:0009607 2.4e—12 9.3e—07 1.000 1.4e—08
4 GO:0019882 1.2e—10 2.5e—10 5.9e—08 1.6e—10
5 GO:0030333 4.2e—10 3.5e—10 0.757 5.3e—10
6 GO:0019884 4.1e—09 3.0e—06 1.000 4.9e—09
7 GO:0019886 3.2e—08 9.9e—05 1.000 3.2e—08
8 GO:0009605 3.2e—05 0.0020 1.000 0.026
9 GO:0050874 0.012 0.0071 1.000 1.000
10  GO:0016126 0.019 0.0187 0.062 0.023
11 GO:0050896 0.020 0.0726 1.000 1.000

Table 5.6: The p-values for the three different weighting functions.

The function that penalizes less is sigRatioL. For example, if the p-value for node a is 1073
and the p-value of node b is 10712, then the weight given by sigRatiol is equal to 0.25 and
the weight given by the other two functions is 1077, If the significance of node a is 107>, and
thus below the threshold e = 1074, then the sigRatio is 107 but the sigRatio.weak score gives
1. We can see that the weight method using sigRatio weighting function is somehow close to
the elim method.

In Table the adjusted p-values for the weight method using the three weighting func-
tions are presented. We see that for the sigRatio function we obtain very few significant GO
terms, a behavior similar as with the elim method. Table B emphasizes this by showing the
number of significant GO terms for different cutoffs.

level & | weight.log weight.ratio weight.weak
0.01 9 2 7
0.05 10 2 9
0.1 11 3 11

Table 5.7: The number of significant GO terms for different cutoffs.

The correlations between all versions of weight algorithm are shown in Table ¥ The
rank correlation is computed for a sample of GO terms compiled in the same way as in
Table In this case we obtain a total of 138 GO terms. We see that the method that is
most correlated with the elim method is the weight method with sigRatio weighting function.

We see that different behavior of the weight algorithm can be achieved when using differ-
ent weighting functions.

Next we investigate how the significant GO terms are distributed over the GO DAG.
For this we plot for each algorithm mentioned above the subgraph induced by the most
significant GO terms, see Section BEZTl Since the subgraphs have around 40 nodes, in the
following figures, for the sake of reading clarity, we display only the GO ID of a node. The
graphs presented below can be easily reproduced if there is a need to add more information
to the nodes label.
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classic.f elim weight.log weight.ratio weight.weak

classic.f 1.000 0.310 0.226 —0.102 —0.126
elim 0.310 1.000 —0.006 0.388 0.334
weight.log 0.226 —0.006 1.000 0.462 0.512
weight.ratio | —0.102 0.388 0.462 1.000 0.799
weight.weak | —0.126 0.334 0.512 0.799 1.000

Table 5.8: Rank correlation for a sample of significant GO terms between different settings
of the weight algorithm.

The significant nodes are represented as boxes in the plots. To better emphasize the
differences between all methods and classic.f we plot the nodes that are found significant by
classic.f but not by the current method as circles.
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Figure 5.5: The subgraph induced by the most significant 11 GO terms found by method
classic.f. This subgraph contains 22 nodes. There are 10 nodes in figure (a), 22 nodes in
figure (b) and 36 in figure (c).
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Figure 5.6: The subgraph induced by the most significant 11 GO terms found by method
classic.z. This subgraph contains 28 nodes. There are 12 nodes in figure (a), 26 nodes in
figure (b) and 52 in figure (c).
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Figure 5.7: The subgraph induced by the most significant 11 GO terms found by method topo.
This subgraph contains 33 nodes. There are 22 nodes in figure (a), 33 nodes in figure (b) and

45 in figure (c).
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Figure 5.8: The subgraph induced by the most significant 11 GO terms found by method elim.
This subgraph contains 34 nodes. There are 26 nodes in figure (a), 33 nodes in figure (b) and

49 in figure (c).
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Figure 5.9: The subgraph induced by the most significant 11 GO terms found by method
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Figure 5.10: The subgraph induced by the most significant 11 GO terms found by method
weight. The weighting function used is sigRatio.weak( ). This subgraph contains 2 nodes.
There are 11 nodes in figure (a), 24 nodes in figure (b) and 63 in figure (c).
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Figure 5.11: The subgraph induced by the most significant 11 GO terms found by method
weight. The weighting function used is sigRatioL( ). This subgraph contains 22 nodes. There
are 10 nodes in figure (a), 22 nodes in figure (b) and 50 in figure (c).
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Figure 5.12: The subgraph induced by the most significant 5 GO terms found by method
weight. The weighting function used is sigRatio( ). This subgraph contains 25 nodes. There
are 48 nodes in figure (a), 52 nodes in figure (b) and 69 in figure (c).
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Figure 5.13: The subgraph induced by the most significant 11 GO terms found by method
all.LM. This subgraph contains 31 nodes. There are 12 nodes in figure (a), 31 nodes in figure
(b) and 51 in figure (c).
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5.3.2 Setup 2: Comparison within B-cell ALL

29

In this setup the list of interesting genes contains 28 genes, see Section Il We are interested
in finding the significant biological processes and thus we used the BP ontology.

As in Setup 1, the p-values reported by each algorithm are adjusted using the (Benjamini and Yekuftie

false discovery rate procedure. The results are presented in Table

GO ID classic.f topo elim  readjust weight classic.z all.M

1 GO:0000115 0.024 0.024 0.024 0.024 0.024 < 1e—30 0.024

2 GO:0000084 0.025 1.000 1.000 1.000 0.025 < 1e—30 1.000

3 GO:0008630 0.040 0.060  0.060 0.060 0.040 < 1e—30 0.060

4 GO:0008629 0.206 0.275 0.275 1.000 0.136  1.2e—25  1.000

5 GO:0007612 0.273 0.312 0.312 0.521 0.273 < 1e=30 0.521

6 GO:0042770 0.273 0.312 0.312 1.000 0.273  4.7e—18  1.000

7 GO:0006298 0.273 0.312 0.312 0.546 0.273  4.7e—18  0.546

8 GO:0045005 0.273 0.312 0.312 1.000 0.273  4.7e—18  1.000

9 GO:0007165 0.853 0.960 0.961 1.000 1.000  0.041 1.000

Table 5.9: The GO terms with an adjusted p-value less than 1.
GO ID Term Observed Expected Annotated

1 GO:0000115 S—phase—specific transcri... 3 0.023 8
2 GO:0000084 S phase of mitotic cell c... 3 0.029 10
3  GO:0008630 DNA damage response, sign... 3 0.038 13
4 GO:0008629 induction of apoptosis by... 3 0.07 24
5 GO:0007612 learning 2 0.015 5
6 GO:0042770 DNA damage response, sign... 3 0.096 33
7 GO:0006298 mismatch repair 3 0.096 33
8 GO:0045005 maintenance of fidelity d... 3 0.096 33

9 GO:0007165 signal transduction 16 7.196 2473

Table 5.10: Some statistics for the significant GO terms

We note that in this case the adjusted p-values are not as significant as the one obtained
for Setup 1. In Table BETT] the number of significant GO terms for different cutoffs are shown.
For this setup the conservative (Benjamini and Yekutieli, 2001]) false discovery rate p-value
adjustment is quite strict.

level & | classic.f topo elim readjust weight classic.z all.M
0.01 0 0 0 0 0 26
0.05 3 1 1 1 3 33
0.1 3 2 2 2 3 34

Table 5.11: The number of significant GO terms for different cutoffs.

Table LTI shows the raw p-values for the first GO terms presented in Table [ If the raw
p-values are considered, the number of GO terms for different cutoffs is shown in Table
We see that the weight method is the less conservative method. As in Setup 1, the p-
values reported by the z test are very small in comparison with all the others. For example,
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GO ID classic.f  topo elim readjust  weight classic.z  all.M

GO:0000115 1.2e—06 1.2e—06 1.2e—06 1.2e—06 1.2e—06 < 1e—30 1.2e—06
GO:0000084 2.6e—06 1.00000 1.00000 1.00000 2.6e—06 < le—30 0.00584
GO:0008630 6.2e—06 6.2e—06 6.2e—06 6.2e—06 6.2e—06 < le—30 6.2e—06
GO:0008629 4.3e—05 4.3e—05 4.3e—05 1.00000 2.8e—05 5.1e—29  0.00030
GO:0007612 8.1e—05 8.1le—05 8.1le—05 8.1le—05 8.1le—05 < 1le—30 8.1le—05
GO0:0042770 0.00011  0.00011 0.00011  1.00000 8.5e—05 2.7e—21  0.00066
G0:0006298 0.00011  0.00011 0.00011 0.00011 0.00011 2.7e—21  0.00011
GO0:0045005 0.00011  0.00011 0.00011 1.00000 0.00011 2.7e—21  0.00070
GO:0007165 0.00040  0.00040  0.00040 0.00040 0.00333 6.9e—05  0.00061

© 00 ~J O U= W+

Table 5.12: The raw p-values for the first 9 GO terms given by classic.f method.

GO0:0000115 has a raw p-value in the order of 1073, It seems that the z-test assigns low
p-values particularly to GO nodes with a low number of annotated genes.

level o | classic.f topo elim readjust weight classic.z all.M
0.01 32 30 30 24 20 60 30
0.05 55 53 50 45 37 69 50
0.1 67 65 62 57 56 80 65

Table 5.13: The number of significant GO terms for different cutoffs. The raw p-values are
used.

classic.f topo elim readjust weight classic.z all.M
classic.f 1.000 0.840 0.682 0.388  0.483 0.877 0.967
topo 0.840 1.000 0.799 0.505  0.372 0.754 0.808
elim 0.682 0.799 1.000 0.525  0.506 0.628 0.759
readjust 0.388 0.505 0.525 1.000  0.193 0.405 0.405
weight 0.483 0.372 0.506 0.193  1.000 0.381 0.654
classic.z 0.877 0.754 0.628 0.405  0.381 1.000 0.819
all. M 0.967 0.808 0.759 0.405  0.654 0.819 1.000

Table 5.14: Rank correlation for a sample of significant GO terms.

For this setup the significant GO terms are more specific (the nodes are lower in the DAG
hierarchy) than the ones in Setup 1. In fact the first 8 GO terms reported by the classic.f
method are leaves or parents of the leaves. This can be seen in Figure The counts
for the nodes are plotted. Nodes that have no interesting genes mapped receive p-values of
1. For the other nodes the p-values are shown in Table We note that the phenomena
discussed in the example from Section Bl Figure Bl appear for the nodes GO:0006298 and
GO:0045005. They have the same amount of mapped genes and thus their reported p-values
are equal. Similarly, nodes GO:0000115 and GO:0000084 have very similar p-values.

In Figure LT4 we also plot the p-values given by the method readjust and weight. We see
that method readjust completely discards all parents of the significant leaves, thus consider-
ing as significant more specific GO terms. The p-values assigned by the weight method are
smoother. In Section we discuss in more detail the behavior of the algorithms.

From Table B.T2 we see that some methods return similar p-values. For example, the
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classic.f weight.weak weight.log weight.ratio

classic.f 1.000 0.339 0.490 0.352
weight.weak 0.339 1.000 0.730 0.990
weight.log 0.490 0.730 1.000 0.742
weight.ratio 0.352 0.990 0.742 1.000

Table 5.15: Rank correlation for a sample of significant GO terms between different settings
of the weight algorithm.

methods topo and elim give the same p-values for the shown GO terms. This behavior is
normal, since the significant nodes are leaves or parents of the leaves.

In Table BET4] the rank correlation for a subset of GO terms compiled as the one in Setup
1 is shown. The difference between the weighting functions used in the weight algorithm are
shown in Table B0l We see that in this setup the methods are highly correlated. One reason
for this is the small number of interesting genes, and thus few nodes, mainly nodes close to
leaves, are found significant.

In the following we present the graphs induced by a subset of GO terms. Since some
methods are highly correlated the graphs for some methods are skipped. The representation
of the nodes is as explained in Section B3l
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Figure 5.14: The lower induced subgraphs for the most significant 8 GO terms given by the
classic.f method. In the figure (a) the counts for the nodes are displayed. In figure (b) and
(c) the p-values for the readjust, respectively weight method are displayed.
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Figure 5.15: The subgraph induced by the most significant 3 GO terms found by method
classic.f. This subgraph contains 40 nodes. There are 43 nodes in figure (a), 58 nodes in
figure (b) and 59 in figure (c).
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Figure 5.16: The subgraph induced by the most significant 8 GO terms found by method
classic.z. This subgraph contains 46 nodes. There are 50 nodes in figure (a), 65 nodes in
figure (b) and 72 in figure (c).
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Figure 5.17: The subgraph induced by the most significant 3 GO terms found by method elim.
This subgraph contains 40 nodes. There are 43 nodes in figure (a), 59 nodes in figure (b) and
59 in figure (c).
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Figure 5.18: The subgraph induced by the most significant 3 GO terms found by method
readjust. This subgraph contains 43 nodes. There are 52 nodes in figure (a), 59 nodes in

figure (b) and 60 in figure (c).
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Figure 5.19: The subgraph induced by the most significant 3 GO terms found by method
weight. The weighting function used is sigRatiol( ). This subgraph contains 40 nodes. There
are 43 nodes in figure (a), 59 nodes in figure (b) and 66 in figure (c).
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Figure 5.20: The subgraph induced by the most significant 8 GO terms found by method
weight. The weighting function used is sigRatio( ). This subgraph contains 48 nodes. There
are 50 nodes in figure (a), 65 nodes in figure (b) and 71 in figure (c).
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Figure 5.21: The subgraph induced by the most significant 3 GO terms found by method all.M.
This subgraph contains 43 nodes. There are 50 nodes in figure (a), 59 nodes in figure (b) and
60 in figure (c).
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5.3.3 Advantages and disadvantages of scoring algorithms

In this section we discuss the advantages and disadvantages of the algorithms presented in
Chapter @l based on the results obtained from the two setups in Section 3 Tland Section

Algorithm topo

Advantages. By comparing the graphs from Figure and Figure B we can see that
this method manages to eliminate some of the local dependences between the GO terms.
For Setup 1 in the list of top 20 significant GO terms new nodes that are ranked lower
by the classical approach are obtained. The graph induced by these 20 GO terms has 45
nodes, 9 more nodes than the graph obtained by the classic.f method. This expansion of the
graph is useful since new areas in the graph are pointed out for investigation. For example,
GO:0006468 and GO:0030097 give new paths in the graph that are not discovered by the
classic.f method if the first 20 GO terms are considered.

Disadvantages. On the other hand the method depends on the cutOff parameter, see
Algorithm [ A large value for this parameter (close to 1) is considering too many nodes
as significant during the running time, and the final result can be biased. By choosing a
small value for this parameter the result is closer to the classic.f method; only few terms
are considered significant and thus the p-values of only few terms are changed. There is no
clear way in which the cutOff parameter should be chosen. In Section B4l we show how the
algorithm performs for different cutoffs in a simulation setup.

The second problem with this algorithm is that a significant - not-significant - significant
level effect appears. This is due to the fact that the significance of one node depends only
on its direct children and not on the children of its children an so on. If the child of node
x is considered significant than the genes from the child are removed from the node and the
significance of node x is decreased. If the obtained p-value is above the cutoff, then when a
parent of node x is processed node x is considered not-significant and no genes from x are
removed from the parent. In this case the parent is found significant. This problem can be
easily seen in Figure B for the path GO:0050896 — GO:0009605 — GO:0009607 —
G0:0006952 — GO:0006955.

Algorithm elim

Advantages. This method was introduced in order to overcome the problems of the method
topo. The level effect from method topo is not present. The main reason is that method elim
has a global approach. When we decide to eliminate the genes from some child of node x, we
eliminate them from all nodes of the upper.inducedGraph(x), see Algorithm Pl In this way we
prefer more specific GO terms, thus we look for GO terms in the lower levels of the DAG. The
graph induced by the first 20 GO terms reported by this method for Setup 1 has 49 nodes,
5 nodes more than topo, thus the significant nodes are more spread in the DAG, pointing to
more areas for investigation. By inspecting the graph in Figure we see that nodes very
close to the root of the graph that were reported as significant by the classic.f method are
completely discarded.
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Disadvantages. Similar to the topo method the cutOff parameter is playing an important
role in the results of the algorithm. With a very small value for this parameter the algorithm
prefers very specific terms. This is not desirable since the GO term that best represents the
list of interesting genes can be discarded if all its children are significant.

Another important disadvantage of the method is the simple strategy by which the genes
are eliminated. The topology of the GO DAG is quite complex and the genes mapped to a
node can come from different paths. This is not considered by the algorithm. Thus it can
happen that we are removing too many genes.

The results of this algorithm need to be interpreted with caution. It is advisable to look
at the parents of the reported GO terms for a more correct inference.

Also a disadvantage of this algorithm is its running time. As stated in Section EEZ this
algorithm is quadratic in the worst case in contrast with classic.f and topo which are linear.

Algorithm readjust

Advantages. The main advantage of this method is the way in which a cutoff is chosen.
Since the classical p-values are computed in the first step, different multiple testing procedures
can be used to adjust the p-values. Thus, we can decide with more confidence which nodes
are significant. Using two p-values the level effect present in the topo method is removed.
This can be seen in Figure B0 Note also that the first 20 GO terms are more spread in the
DAG. From the results obtained it seems that this algorithm is close to the elim method. An
advantage over the elim method is the linear running time of the algorithm.

Disadvantages. Using the adjusted p-values given by the classic.f method as evidence for
the significance of the GO terms, the method is biased by the classic.f method.

Similar to the elim method this method is stopping too early. The nodes on the lower
levels are advantaged over their ancestors, even if the ancestors are more significant. Thus,
the issues discussed for elim also hold for this method.

Algorithm weight

Advantages. There are two important advantages for this method. The first is that there
is no cutoff. The second is that the genes are not eliminated completely as before, but they
are weighted.

By changing the weighting function different behaviors can be obtained. For example,
we saw in Section B3] that a result close to classic.f can be obtained if the sigRatio.weak
weighting function is used. On the other side, by giving very small weights we get more close
to the elim method. In fact, by using the sigRatio weighting function the first 20 GO terms
induce a graph with 69 nodes, a graph which is twice as big as the one obtained if the classic.f
method is used. This means that more areas in the DAG are pointed out for investigated, see
Figure and Figure Note also that the significance of the nodes from Figure B.20 is
reduced compared to the other methods.

Another advantage of Algorithm H is that it offers multiple strategies for updating the
weights of the genes. For our experiments we used a simple strategy for recomputing the
significance of the children of a node.
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Disadvantages. Some problems also emerge for this method. The issue on the different
paths from which the genes come is not considered by the method. It is also not clear what
weighting function is better. More information than the simple ratio is desired to be included
in the weights. The ratio is considering only the difference between the terms and not their

magnitude. For example, }8—:; equal 107]2 , but the nodes with a p-value of 10719, respectively

1017
10713, should be considered more important.

Another problem is shown in Figure in which the GO terms G0:0045005 and
GO:0006298 are reported with the same p-value. In this case the weights to be assigned are
1, thus no weighting is performed. It is not clear what should be done in this case and if the
algorithm should prefer more specific nodes or less specific nodes.

The quadratic running time of this method can also be considered a disadvantage.

5.4 Comparing the algorithms on simulated data

In Section we analyzed the behavior of the algorithms presented in Chapter Bl on the
ALL dataset. The problem with this analysis is the subjectivity with which the results are
interpreted. In this section we present the performance of the algorithms on simulated data.

5.4.1 Simulation setup

When analyzing a real dataset like the ALL dataset, we need to assess if the GO terms that
are found significant by an algorithm are the true significant ones. The problem with real
data is that we do not know the truth. In a simulation setup we fix some GO terms to be
the significant ones. The performance of the algorithm is then measured w.r.t. the number
of truly identified nodes.

Next we describe how the data necessary for the input of the algorithms is compiled. As
stated in Figure [Tl all we need is a graph with the properties of the GO DAG, a list of items
(genes) and a list of interesting items.

We want to stay as close as possible to the reality. Thus, we choose the GO DAG as
the underlying graph. The list of items contains all the probes found on the HGU95aV2
Affymetrix chip that are annotated to the GO hierarchy. The BP hierarchy was chosen as
the hierarchy. We could map only 9623 probes out of a total of 12625 probes. The resulting
DAG has 2311 nodes and 3525 edges.

A set of nodes that fulfill certain criteria is randomly selected. This set of nodes is de-
noted as the wanted nodes. Our criterion was to select nodes with the number of mapped
items in a certain interval. For example, if we are interested in nodes close to the root of
the DAG, then we set an interval of [100,1000]. We impose such a constraint since we want
to overcome two problems. First, the small nodes are too specific and cannot synthesize the
underlying biology, see (Gentleman, 2004d). On the other hand, nodes with too many items
mapped to them are to general. To select the wanted nodes all the nodes that do not fulfill
our criterion are discarded. From the remaining nodes the desired number of wanted nodes
is selected with equal probability.
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After selecting the wanted nodes the list of interesting items is compiled. From each
selected node the list of items is retrieved. Then, the union of these items (with duplicates
removed) is the list of interesting items. To model better the reality, some noise is introduced
in the list of interesting items. A fraction, for example 10%, of interesting items is randomly
selected and replaced with items that are not in the interesting list.

Having compiled the lists of all items and the list of interesting items the goal is to recover
as best as possible the wanted nodes. To get an idea how the wanted nodes are distributed
in the DAG and how the dependences between nodes play a role in the results, we plot in
Figure the subgraphs induced by the wanted nodes and the nodes found significant by
the classic algorithm. The wanted nodes have numbers of items in the interval [100,500]. We
choose this interval for visualization reasons (for the interval [10,50] we obtain in average a
subgraph with more than 500 nodes, thus hard to visualize).

In Figure the pie plots show the amount of interesting items mapped to the nodes,
see Section B2ZTl We can see that a wanted node propagates its significance to the neighbors.
Trivially, all the children of a wanted node are more dense than its parent, see property
and B from Figure [Tl

In Figure the result of the classic algorithm is shown. The boxes represent the
wanted nodes. We see that many wanted nodes are not considered significant (they are col-
ored light yellow). In the left part of the graph we can see an area with many significant
nodes (orange-red area).

In the next section we discuss the results obtained using this type of simulation. All tested
algorithms are using Fisher’s exact test to score the nodes for significance. The algorithms
are the ones presented in Chapterl Different parameters are tested for each method. For the
weight method all weighting functions described in Section B3] are used. We test different
combination methods that report the average of the p-values. The methods are named with
the initials of the methods used in the average. For example, CEW denotes the method that
averages the p-values of classic, elim and weight algorithms.
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(b) The nodes obtained with the classic method

Figure 5.22: The subgraphs induced by the wanted nodes in a simulation setup. There are 20
wanted nodes. The noise level is set to 10%. The red and blue nodes from figure (a) are the
wanted nodes. In figure (b) the boxes represent the wanted nodes.
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5.4.2 Results

To assess the performance of the algorithms we used the following measure. For each method,
the nodes are sorted in ascending order of their computed p-values. We fix a k and count
how many wanted nodes are among the top k nodes

score%(/\/l) = [topr(M) Nwanted|.

topy(M) denotes the set of first k nodes for method M and wanted denotes the set of
wanted nodes. Methods that obtain a higher score are considered better.

To get more insight into how the methods account for the topology of the graph, the
following scores are defined:

score]L(M) = |(top(M) U children(top(M)) U parents(topk(M))) N wanted|,
scorelp(/\/l) = |(topx(M) U parents(topy(M))) Nwanted| .

Thus, scorellp looks at the first k nodes together with their parents. We compute these
scores based on the observation that some algorithms are considering as significant more
specific GO terms, see the discussion of the methods elim and readjust from Section
If for some method M the difference scorelp(/\/() — scored(M) is large then method M is
stopping too early, discarding the parents of some significant nodes. If, on the other hand,
both scores are almost equal, then the first k nodes are close neighbors (the effect seen in
Figure BH), and thus the method gives many false positive nodes.

k | Score | class w.log w.weak w.ratio topo elim readj allM CWWIWs EWWIWs WWIWs WIWs

0 9 15 13 18 13 20 20 21 15 21 17 18

1p 9 15 13 18 15 22 22 21 15 21 17 18

25 1 12 19 15 19 17 22 22 22 17 22 18 19
2p 9 15 13 18 15 25 24 22 15 22 17 18

2 19 23 20 21 25 25 25 25 22 25 20 22

0 22 27 24 31 25 31 29 33 30 33 31 31

1p 22 28 24 33 28 42 38 39 31 37 31 32

50 1 27 31 28 33 30 42 39 39 33 37 33 33
2p 22 28 24 33 28 47 43 39 31 37 31 32

2 31 34 33 35 36 47 45 42 37 39 36 35

0 29 36 31 44 33 32 30 40 39 42 43 43

1p 29 37 31 45 41 44 42 45 41 46 45 44

75 1 33 38 35 45 42 44 42 46 42 46 46 44
2p 29 38 31 46 41 49 47 45 41 46 45 45

2 37 41 38 46 43 49 47 46 43 47 47 46

0 36 44 39 47 38 34 31 42 47 46 46 47

1p 37 45 39 49 48 45 43 47 48 48 48 49

100 1 40 46 41 49 48 46 43 47 48 48 48 49
2p 37 46 39 49 48 50 48 47 48 48 48 49

2 43 47 42 49 48 50 49 47 48 48 48 49

Table 5.16: The results for one run on simulated data with 50 wanted nodes, 10% noise level
and 10 to 20 items mapped to the wanted nodes.

Similarly, we define scoreﬁ(/\/l) and scoreip(/\/l) in which we look two levels away from

the first k nodes.
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Table BT6 shows the results obtained for a simulation run. There are 50 wanted nodes.
The number of items mapped to a node is between 10 and 20. There is 10% noise introduced
in the list of interesting items. For each method all five scores are given for the different
values of k. To get a better idea of the differences between the methods in Table BET7 we
give the percentage of wanted nodes found in top k nodes. The table gives only the findings

for score%.
k | class w.log w.weak w.ratio topo elim readj allM CWWIWs EWWIWs WWIWs WIWs
25 1 0.18 0.30 0.26 0.36  0.26 0.40 0.40 0.42 0.30 0.42 0.34 0.36
50 | 0.44 0.54 0.48 0.62 0.50 0.62 0.58 0.66 0.60 0.66 0.62 0.62
75 | 0.58 0.72 0.62 0.88 0.66 0.64 0.60 0.80 0.78 0.84 0.86 0.86
100 | 0.72 0.88 0.78 094 0.76 0.68 0.62 0.84 0.94 0.92 0.92 0.94

Table 5.17: The percentage of wanted nodes found for one run on simulated data with 50
wanted nodes, 10% noise level and 10 to 20 items mapped to the wanted nodes.

We see that all proposed methods perform better than the classic method for small values
of k. The elim method seems to be the best one in this case, beating the classic method with
almost 20%. Averaging the reported p-values for different methods also helps. We obtain 11
more nodes than the classic method with the all.M method. With k increasing, the methods
that eliminate items, see Section 2, are under-performing for score% The weight method
is always above the classic. In particular, we are more than 10% better than classic if the
sigRatio.log weight function is used. On the other hand, we can see that the method elim is

preferring more specific nodes as we known. Note that there is no difference between score]]<

and scorellp for this method. Also by looking at the parents and the grand-parents of the top
50 nodes we find 47 wanted nodes, 3 less than optimal. Thus, the elim algorithm successfully
identifies the areas in the DAG where the wanted nodes are located, but fails to point at
them. This is not the case for the classic algorithm. For this algorithm looking at the parents
gives us no information in this case.

k | class w.log w.weak w.ratio topo elim vreadj allM CWWIWs EWWIWs WWIWs WIWs
25 | 0.11 0.26 0.15 0.28 0.18 0.34 0.31 0.29 0.24 0.31 0.28 0.29
50 | 0.29 0.51 0.35 0.56  0.37 055 049 0.53 0.48 0.57 0.52 0.56
75 1 045 0.71 0.52 0.76 0.53 0.62 0.56 0.71 0.67 0.76 0.73 0.76
100 | 0.62 0.84 0.67 0.79 0.64 0.67 0.61 0.83 0.81 0.87 0.84 0.84

Table 5.18: Awverage percentage of wanted nodes found over 100 runs on simulated data with
50 wanted nodes, 10% noise level and 10 to 20 items mapped to the wanted nodes.

To obtain more precise results, 100 simulations were performed. Table ET9and Table BIR
present for each k the average scores. We see that the results are similar to the ones from
Table In average the weight.log method is 20% better than classic. The best result is
obtained by the averaging method EWWIWs.

A more difficult dataset can be obtained if the noise in increased and nodes higher in
the hierarchy are selected. Tables B.20, B2 and show the results for simulated data in
which the 15 wanted nodes are chosen such that 100 to 200 items are mapped to them, and
the list of interesting items contains 50% noise.
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k | Score | class w.log w.weak w.ratio topo elim readj allM CWWIWs EWWIWs WWIWs WIWs
0 5.4 13.2 7.6 14.2 9.0 16.9 15.6 14.6 12.1 15.4 13.8 14.5
1p 5.5 13.5 7.6 14.5 11.2 229 213 175 12.3 17.2 14.0 14.8
25 1 12.2  18.6 13.7 20.0 151 23.1 21.8 21.1 18.3 21.7 19.7 20.2
2p 5.5 13.6 7.6 14.5 11.2 239 227 178 12.3 17.4 14.1 14.8
2 19.3 223 19.9 23.2 225 248 246 244 22.6 24.3 23.2 23.3
0 15 25 17 28 18 27 25 27 24 28 26 28
1p 15 26 17 29 24 40 36 31 25 31 27 29
50 1 23 32 24 35 29 41 37 35 32 36 34 36
2p 15 26 17 29 24 43 39 31 25 31 27 29
2 29 36 30 39 35 45 42 40 36 40 37 39
0 23 36 26 38 26 31 28 35 34 38 36 38
1p 23 36 26 39 36 44 42 40 34 40 37 39
75 1 30 42 32 46 39 45 43 44 41 45 44 46
2p 23 36 26 40 36 48 46 40 35 41 38 39
2 35 44 36 48 43 48 48 46 43 47 46 47
0 31 42 34 40 32 33 31 41 41 43 42 42
1p 31 43 34 41 44 46 44 45 41 45 43 43
100 1 36 47 38 48 46 46 45 48 46 48 47 48
2p 31 43 34 42 44 49 48 46 41 45 43 43
2 40 49 41 50 48 49 49 49 47 49 49 49

Table 5.19: Average results over 100 runs on simulated data with 50 wanted nodes, 10% noise
level and 10 to 20 items mapped to the wanted nodes.

k | class w.log w.weak w.ratio topo elim readj allM CWWIWs EWWIWs WWIWs WIWs
10 | 0.24 0.32 0.25 0.38 028 040 0.38 0.36 0.30 0.35 0.31 0.30
25| 0.58 0.75 0.62 0.76 0.61 0.63 0.56 0.77 0.71 0.76 0.72 0.71
50 | 0.94 0.95 0.94 0.81 078 0.72 0.65 0.97 0.96 0.97 0.96 0.96

Table 5.20: Awverage percentage of wanted nodes found over 100 runs on simulated data with
15 wanted nodes, 50% noise level and 100 to 200 items mapped to the wanted nodes.

k | Score | class w.log w.weak w.ratio topo elim readj allM CWWIWs EWWIWs WWIWs WIWs
0 3.6 4.8 3.8 5.6 4.3 5.9 5.7 5.4 4.5 5.2 4.6 4.5
1p 3.7 5.2 3.8 6.2 5.7 8.8 8.1 6.4 4.7 6.0 5.0 4.8
10 1 5.2 6.3 5.1 7.5 6.8 8.9 8.3 7.3 6.1 6.8 6.1 6.0
2p 3.7 5.2 3.8 6.3 57 9.7 9.2 6.7 4.8 6.2 5.0 4.8
2 6.4 7.0 6.2 8.3 8.2 9.9 9.5 8.3 7.0 7.7 7.0 6.9
0 8.8 11.2 9.3 11.5 9.2 9.4 8.4 11.5 10.7 11.3 10.9 10.7
1p 8.8 11.7 9.4 12.5 12.8  12.7 119 125 10.9 12.1 11.2 11.0
25 1 9.9 12.7 10.4 14.2 13.3 129 122 132 12.0 12.8 12.3 12.0
2p 8.8 11.8 9.4 12.8 12.8 14.1 13.7 128 11.0 12.3 11.3 11.0
2 10.8  13.2 11.0 14.8 13.6 14.3 14.1 13.7 12.5 13.3 12.7 12.5
0 14.0 14.2 14.1 12.2 11.6 10.8 9.8 14.6 14.4 14.6 14.4 14.4
1p 14.1 145 14.2 13.1 149 13.7 13.0 149 14.5 14.8 14.6 14.5
50 1 14.3 149 14.4 14.7 149 138 133 15.0 14.8 14.9 14.9 14.8
2p 14.1 146 14.2 13.4 149 146 143 149 14.6 14.9 14.7 14.6
2 14.5 15.0 14.5 15.0 149 147 147 150 14.9 15.0 14.9 14.9

Table 5.21: Average results over 100 runs on simulated data with 15 wanted nodes, 50% noise
level and 100 to 200 items mapped to the wanted nodes.
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k | Score | class w.log w.weak w.ratio topo elim vreadj allM CWWIWs EWWIWs WWIWs WIWs
0 4 4 4 5 4 5 5 7 4 7 4 4
1p 4 5 4 6 6 8 7 8 5 7 5 5
10 1 4 5 4 6 7 8 7 8 5 7 5 5
2p 4 5 4 6 6 9 8 9 5 8 5 5
2 4 5 4 6 7 9 8 9 5 8 5 5
0 9 11 9 14 8 12 10 11 11 11 11 11
1p 9 11 9 15 12 13 12 11 11 11 11 11
25 1 9 11 9 15 12 13 12 11 11 11 11 11
2p 9 11 9 15 12 14 13 11 11 11 11 11
2 10 11 9 15 12 14 13 11 11 11 11 11
0 13 15 14 14 13 13 13 15 15 15 15 15
1p 13 15 14 15 15 13 13 15 15 15 15 15
50 1 13 15 14 15 15 13 13 15 15 15 15 15
2p 13 15 14 15 15 14 14 15 15 15 15 15
2 14 15 14 15 15 14 15 15 15 15 15 15

Table 5.22: The results for one run on simulated data with 15 wanted nodes, 50% noise level
and 100 to 200 items mapped to the wanted nodes.

We tried different parameters for the simulation: the number of nodes, the number of
items allowed for the wanted nodes, and the noise level. The results are similar to the one
presented above.

Figure and Figure show how the average score is varying as a function of k. We
see that for score® the weight method is outperforming always the classic method.

Figure shows the influence of the parameters on the performance of the method. We
observe that in average a very low cutoff gives better results. For the weight method it seems
that the best choice is the sigRatiol weighting function. The sigRatio function is better
for smaller values of k, but after a certain threshold it is dominated by the log ratio. With
sigRatio.weak the weight method is close to the classic method, but it is never worse.

We are also interested to see how the score is affecting each method. In Figure
and Figure the improvement due to a different score is shown for each method. The
elim method is almost optimal if score® is used. For the classic method there is almost no
improvement, when looking only at the parents. A small improvement is obtained by looking
at the complete neighborhood.

Finally, we are interested how the noise introduced in the list of interesting items affects
the performance of the algorithms. In practice there is a considerably amount of noise in the
data. We believe that a level of 50% noise in our case makes the problem harder. Figure 2§
shows the method’s performance in noisier instances. Note that the method most affected
by the noise is the classic method.
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Figure 5.26: The impact of the scores on the methods (part I)
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Figure 5.27: The impact of the scores on the methods (part 1)
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Chapter 6

Conclusions and future work

In this thesis we analyze the problem of finding enriched functional groups of genes based on
gene expression data. Identifying the most relevant functional groups for an experiment gives
the researcher more insight into the underlying biology. Current methods score predefined
functional groups without taking into account the relations between these groups. If the
Gene Ontology is used to form functional groups, then more biological knowledge is used in
the analysis if the algorithms account for the relationships between the GO terms.

6.1 Conclusions

Our research shows that accounting for the dependences between functional groups is not
a trivial task. We proposed several heuristics for integrating the DAG structure of the GO
in testing for group enrichment. The key idea is to compute the significance of a GO term
based on its neighborhood. Different strategies for this are presented in Chapter Bl The
experimental results from Chapter B show that we manage to improve over current methods.

Another difficulty in such an analysis is the evaluation of the results. There is no clear
measure to tell which method performs better on a real dataset. The evaluation is done by the
researcher and thus contains a certain amount of subjectivity. To eliminate this subjectivity
we evaluate the methods on simulated data. However there are also some problems with
simulated data. Given the complicated topology of the GO and the way the genes are
annotated to the GO terms, the wanted nodes induce other significant nodes (possibly ‘more
significant’ nodes). Secondly, adding noise can be misleading. The genes from some wanted
nodes can be replaced with other genes, thus making the nodes not significant any more.
Although simulated data are not perfectly representing real data, we believe that simulated
data are a big challenge. Our methods seem to be more robust to noisier data than the
current methods.

We should be aware of the fact that it is hard to beat the classical approach in which each
node is scored independently. The reason is that this simple approach is controlling the false
negative rate. This means that more nodes are reported as significant but there are very few
truly significant nodes that are undiscovered by the method. Our aim was to reduce the false
positive rate. Algorithm Bl manages to reduce this rate and at the same time keeps the false
negative rate low. On the other hand Algorithm Bl further reduces the false positive rate, but
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the false negative rate increases.

Thus a compromise must be made. If the researcher is interested in finding the important
areas in the graph, then Algorithm Blis to be preferred. Investigating the neighborhood of the
obtained nodes can significantly improve the result of the inference. For this, visualization
tools as the ones presented in Section B2ZT] can be very useful.

There are some issues that are not considered by all presented algorithms. The most
important issue is that the algorithms look only at the counts in a node. Without any
assumption on the list of interesting genes there is no other information that we can use.
If the interesting genes are differentially expressed genes than the method should use this
knowledge. By ignoring the distribution of the genes in the node, nodes having the same
amounts of genes mapped to them are receiving the same score. For example suppose we are
in the setup of analyzing differentially expressed genes and suppose that there are two nodes
A and B, with 100 genes mapped to them. For both of them we can map 10 interesting genes.
For node A the 10 genes are the most significant genes found on the microarray. For node
B the 10 genes are the genes with the smallest significance in the list of interesting genes. It
seems natural to say that node A is more significant than node B. By looking only at the
counts both nodes are equally significant.

All in all we sow that integrating the dependences between the nodes is enhancing the
inference. Moreover, we can combine the results of multiple methods, even further improving
the result of the analysis.

6.2 Future work

In this section we briefly outline the future direction we want to take related to the topics
discussed in this thesis.

We will focus on implementing more sophisticated weighting schema for Algorithm HEl
A better understanding of the dependences between the nodes can be useful in this direction.
Given that the same gene can be annotated at different GO terms in the GO hierarchy we
must take into account the path of the nodes at which the genes were originally annotated.
By considering this, the weighting can be more precise. Another direction is to make the
algorithms capture more global behavior. In our experiments Algorithm Bl was using a simple
function recomputeSig( ). Tuning this function can improve the results.

We want to use other statistical tests, in addition to Fisher’s Exact test, especially non-
parametric tests that account for the distribution of the genes in a GO term. The Kolmogorov-
Smirnov test seems to be a feasible choice. Trying to find a theoretical model for this type
of inference is our primary goal.

Apply the methods to more microarray datasets other than ALL can give us more insight
into the problems of each algorithm and thus help to improve the algorithms.

The algorithms presented in this thesis are not limited to microarray data. As stated in
Figure [l any other type of (biological) data that can be mapped to some ontology can be
scored using these methods. Thus, we are interested in applying the methods in different
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areas. The result of the algorithms is a score for each node in the graph. These scores can
be used as input for other types of analysis.

We also plan to develop the R software that was used in this thesis. We want to provide
an easy and flexible tool for the analysis of the GO and other ontologies. Visualization tools
that simplify the interpretation of the results are very important for such analysis. Using
interactive tools can improve the analysis of the results, and at the same time the development
of the algorithms.
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