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Overview

➽ Gene set enrichment

• Parametric based tests [Khatri and Draghici, 2005]

• Distribution based tests [Subramanian, A., et al., 2005]

➽ Gene Ontology terms scoring

• classic method

• elim method

• weight method

➽ Evaluation and stability of the methods

• Discrimination into B-cell and T-cell type leukemias [Chiaretti, S., et al., 2004]

• Discrimination based on minimal residual disease (MRD) [Cario, G., et al., 2005]

• Factor analysis for prostate cancer progression

• Influence of the p-value adjustment

• Evaluation on simulated data

➽ Conclusions & Feature work
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Gene sets enrichment

➢ The Microarray experiments provide a long list of genes .

➢ Typical studies analyze genes one by one:

1. samples are divided into two groups: disease vs. healthy and the genes are ranked

according to differential expression.

2. genes are ordered according to correlation of the expression values with a phenotype

measurement.

These studies result in an ordered list of genes.
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Gene sets enrichment

➢ The Microarray experiments provide a long list of genes .

➢ Typical studies analyze genes one by one:

1. samples are divided into two groups: disease vs. healthy and the genes are ranked

according to differential expression.

2. genes are ordered according to correlation of the expression values with a phenotype

measurement.

These studies result in an ordered list of genes.

➢ More important is the group enrichment :

• given a set of genes with some biological function, analyze the positions of these genes in

the ordered list.

• the biological function is relevant, if all genes are among the top genes in the ordered list.
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Gene sets enrichment

Enrichment idea: Sort genes according to some score and analyze positions of members of the

investigated gene group in this list.
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Gene sets enrichment

Enrichment idea: Sort genes according to some score and analyze positions of members of the

investigated gene group in this list.

➢ We want to know if the members of group a have

significantly small ranks (higher in the list). If this is

the case, then group a is enriched.

Gene Score Group

gene
σ(1) score 1 a

gene
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gene
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...... ...... ......
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σ(9905) score 9905 b
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investigated gene group in this list.

➢ We want to know if the members of group a have

significantly small ranks (higher in the list). If this is

the case, then group a is enriched.

➢ There are basically two approaches:

1. Define cutoff and count members of group a be-

low and above cutoff (parametric test statistic).
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Gene sets enrichment

Enrichment idea: Sort genes according to some score and analyze positions of members of the

investigated gene group in this list.

➢ We want to know if the members of group a have

significantly small ranks (higher in the list). If this is

the case, then group a is enriched.

➢ There are basically two approaches:

1. Define cutoff and count members of group a be-

low and above cutoff (parametric test statistic).

2. Analyze distribution of all ranks of members of

group a (non-parametric test statistic).

Gene Score Group

gene
σ(1) score 1 a

gene
σ(2) score 2 b

gene
σ(3) score 3 a

gene
σ(4) score 4 a

...... ...... ......

gene
σ(100) score 100 b

gene
σ(101) score 101 a

...... ......

gene
σ(9905) score 9905 b
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Parametric tests: Fisher’s exact test

The score for a GO term is the degree of independence between the two properties:

A = {gene is in the list of significant genes}

B = {gene is found in the GO term}.

Significant genes Not significant genes Sum

Genes in G |sigGenes ∩ funcGenes| |sigGenes ∩ funcGenes| |funcGenes|

Genes in G |sigGenes ∩ funcGenes| |sigGenes ∩ funcGenes| |funcGenes|

Sum |sigGenes| |sigGenes| |allGenes|

Testing the independence of two groups in the above contingency table corresponds to

Fisher’s exact test [Khatri and Draghici, 2005].
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GO example

Contingency table for GO:0006955

Significant genes Not significant genes Sum

Genes in G 107 673 780

Genes in G 452 8673 9125

Sum 559 9346 9905

Contingency table for GO:0009059

Significant genes Not significant genes Sum

Genes in G 35 533 568

Genes in G 524 8813 9337

Sum 559 9346 9905

GO:0006955 GO:0009059

Observed 107 35

Expected 44.020 32.055

Standard deviation 6.186 5.339

raw p-value (Fisher) 7.3e-19 0.3166

adj p-value (Fisher) 7.3e-15 1

➢ Fixing a cutoff and looking only at the top genes can be sometimes misleading. Also the position of the

genes is not considered in the previous approach. The information embedded in the genes below the

cutoff is not used. We want to analyze the distribution of all ranks of members of group a.
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Distribution based tests: Kolmogorov-Smirnov
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➢ Genes are ordered with respect to a measure that quantifies the expression differences in the phenotype.

➢ A running-sum statistic is computed: If the next gene belongs to group a, add nb to the current sum. If

not, subtract na from the sum. The total sum is always 0.

➢ Group a is found significant if a high value of the maximal deviation from 0 is obtained. This is a two sided

test.

➢ The significance of running-sum statistic is computed by randomly permuting genes (under the null

hypothesis that the genes are uniformly mixed between groups).
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GO example
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The p-value for GO:0006955 is 0
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Thep-value for GO:0009059 0.2492
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Overview

➽ Gene set enrichment

➽ Gene Ontology terms scoring
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• weight method

➽ Evaluation and stability of the methods
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GO scoring: general problem

Given:

• a directed acyclic graph (GO graph) and a set of items (genes) s.t.:

– each node in the graph contains some genes

– the parent of a node contains all the genes of its child

– a node can contain genes that are not found in the children

• a subset of genes that we call significant genes (differentially expressed genes)

Goal:

• find the nodes from the graph (biological functions) that best represent the sig-

nificant genes w.r.t some scoring function (some test statistic)
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The classic method

GO:0006066
<0.056232>

GO:0006082
<0.605731>

GO:0006629
<0.018155>

GO:0006631
<0.034009>

GO:0006636
<0.000137>

GO:0006690
<0.000251>

GO:0006694
<0.010300>

GO:0006950
<0.008965>

GO:0006952
<1.69e−19>

GO:0006955
<7.24e−19>

GO:0007154
<0.000114>

GO:0007165
<0.000156>

GO:0007242
<0.000281>

GO:0007275
<0.928984>

GO:0007582
<0.518213>

GO:0008150
<1.000000>

GO:0008152
<0.682324>

GO:0008202
<0.028348>

GO:0008610
<0.003199>

GO:0009058
<0.332307>

GO:0009059
<0.316679>

GO:0009581
<0.922100>

GO:0009595
<2.17e−05>

GO:0009596
<2.28e−06>

GO:0009605
<0.231742>

GO:0009607
<1.20e−17>

GO:0009613
<2.59e−05>

GO:0009653
<0.526024>

GO:0009887
<0.637777>

GO:0009987
<0.486926>

GO:0016125
<0.002279>

GO:0016126
<4.50e−05>

GO:0019752
<0.595263>

GO:0019882
<1.94e−15>

GO:0019883
<7.14e−05>

GO:0019884
<9.95e−14>

GO:0019886
<1.02e−12>

GO:0030097
<0.000492>

GO:0030333
<6.10e−14>

GO:0043170
<0.327698>

GO:0050874
<4.75e−06>

GO:0050896
<1.89e−06>

Note: The coloring of the nodes represent the relative significance of the GO terms: dark red is the most

significant, light yellow is the least significant from the graph
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Algorithms

➢ classic algorithm

• Calculate significance of each GO term independently.

• Adjust pvalues for multiple testing (Bonferroni, FDR, etc.).

• Kolmogorov-Smirnov test can easily be used in this case

➢ elim algorithm

• Nodes are processed bottom-up in the GO graph.

• It iteratively removes the genes annotated to significant GO terms from more general GO terms.

• Intuitive and simple to interpret.

➢ weight algorithm

• The genes obtain weights that denote the gene relevance in the significant nodes.

• To decide if a GO term u better represents the interesting genes, the enrichment score of node u is

compared with the scores of its children.

• Children with a better score than u better represent the interesting genes; their significance is

increased

• Children with a lower score than u have their significance reduced.
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The elim method

The main idea: Test how enriched node x is if we do not consider the genes from its significant

children (x.ch[2] in our case).

x

x.ch[1]
 p-val = 0.89

x.ch[2]
 p-val = 1e-5

x.ch[3]
 p-val = 0.03
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The elim method

The main idea: Test how enriched node x is if we do not consider the genes from its significant

children (x.ch[2] in our case).

Algorithm:

1. The nodes are processed bottom-up. This assures that

all children of node x were investigated before node x

itself.

x

x.ch[1]
 p-val = 0.89

x.ch[2]
 p-val = 1e-5

x.ch[3]
 p-val = 0.03
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The elim method

The main idea: Test how enriched node x is if we do not consider the genes from its significant

children (x.ch[2] in our case).

Algorithm:

1. The nodes are processed bottom-up. This assures that

all children of node x were investigated before node x

itself.

2. Let removed(x) be the set of genes that were removed

in a previous step by a node in the lower subgraph in-

duced by node x. Then

genes(x) <−− genes(x) − removed(x).

x

x.ch[1]
 p-val = 0.89

x.ch[2]
 p-val = 1e-5

x.ch[3]
 p-val = 0.03
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The elim method

The main idea: Test how enriched node x is if we do not consider the genes from its significant

children (x.ch[2] in our case).

Algorithm:

1. The nodes are processed bottom-up. This assures that

all children of node x were investigated before node x

itself.

2. Let removed(x) be the set of genes that were removed

in a previous step by a node in the lower subgraph in-

duced by node x. Then

genes(x) <−− genes(x) − removed(x).

3. The p-value for node x is computed using Fisher’s exact

test.

x

x.ch[1]
 p-val = 0.89

x.ch[2]
 p-val = 1e-5

x.ch[3]
 p-val = 0.03
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The elim method

The main idea: Test how enriched node x is if we do not consider the genes from its significant

children (x.ch[2] in our case).

Algorithm:

1. The nodes are processed bottom-up. This assures that

all children of node x were investigated before node x

itself.

2. Let removed(x) be the set of genes that were removed

in a previous step by a node in the lower subgraph in-

duced by node x. Then

genes(x) <−− genes(x) − removed(x).

3. The p-value for node x is computed using Fisher’s exact

test.

4. If node x is found significant, we remove all the genes

mapped to this node, from all its ancestors.

x

x.ch[1]
 p-val = 0.89

x.ch[2]
 p-val = 1e-5

x.ch[3]
 p-val = 0.03
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The elim method
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GO:0006694
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GO:0006950
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<0.038530>

GO:0006955
<3.01e−14>

GO:0007154
<0.000115>

GO:0007165
<0.000157>

GO:0007582
<0.891345>

GO:0008150
<1.000000>

GO:0008152
<0.683392>

GO:0008202
<0.028368>

GO:0008610
<0.003202>

GO:0009058
<0.332579>

GO:0009059
<0.316898>

GO:0009581
<0.998927>

GO:0009595
<1.000000>

GO:0009596
<2.29e−06>

GO:0009605
<0.526431>

GO:0009607
<0.101011>

GO:0009613
<0.000696>

GO:0009987
<0.488090>

GO:0016125
<0.002281>

GO:0016126
<4.50e−05>

GO:0019752
<0.595439>

GO:0019882
<0.000124>

GO:0019883
<7.14e−05>

GO:0019884
<9.96e−14>

GO:0019886
<1.02e−12>

GO:0030333
<0.000734>

GO:0043170
<0.328277>

GO:0050874
<0.998860>

GO:0050896
<0.983638>

Top 10 significant node (the boxes) obtained with method elim
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The weight method

➢ We want to decide if node x is better representing the list of interesting genes (is more

enriched) than any other node from its neighborhood.

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x

x.par[2] x.par[3]
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The weight method

➢ We want to decide if node x is better representing the list of interesting genes (is more

enriched) than any other node from its neighborhood.

➢ The main idea: Associate single genes mapped to a node with weights that denote their

relevance. The elim algorithm uses 0-1 weights.

x.ch[1]
 p-val = 1e-15
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The weight method

➢ We want to decide if node x is better representing the list of interesting genes (is more

enriched) than any other node from its neighborhood.

➢ The main idea: Associate single genes mapped to a node with weights that denote their

relevance. The elim algorithm uses 0-1 weights.

Algorithm:

1. Compute the p-value of node x with its current

weights. Initially all its genes have weight 1.

x.ch[1]
 p-val = 1e-15

x.ch[2]
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The weight method

➢ We want to decide if node x is better representing the list of interesting genes (is more

enriched) than any other node from its neighborhood.

➢ The main idea: Associate single genes mapped to a node with weights that denote their

relevance. The elim algorithm uses 0-1 weights.

Algorithm:

1. Compute the p-value of node x with its current

weights. Initially all its genes have weight 1.

2. CASE I: Look at the children that are more signif-

icant than node x (x.ch[1] and x.ch[4]). These

children are local optima (colored with red).

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20
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The weight method

➢ We want to decide if node x is better representing the list of interesting genes (is more

enriched) than any other node from its neighborhood.

➢ The main idea: Associate single genes mapped to a node with weights that denote their

relevance. The elim algorithm uses 0-1 weights.

Algorithm:

1. Compute the p-value of node x with its current

weights. Initially all its genes have weight 1.

2. CASE I: Look at the children that are more signif-

icant than node x (x.ch[1] and x.ch[4]). These

children are local optima (colored with red).

3. For each such child down-weight all genes mapped

to it in all the ancestors of node x, including x.

Mark these children and GOTO step 1.

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x

x.par[2] x.par[3]

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6
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x
 p-val = 1e-10

x.par[2] x.par[3]
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The weight method

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-8

x.par[2] x.par[3]
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The weight method

4. CASE II: If no child of node x has a p-value less

than the current p-value of node x then node x is

a local optimum.

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-8

x.par[2] x.par[3]

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-7

x.par[2] x.par[3]
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The weight method

4. CASE II: If no child of node x has a p-value less

than the current p-value of node x then node x is

a local optimum.

5. The genes in these children are down-weighted

and the p-values for these nodes are recomputed

with the new updated weights.

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6
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x
 p-val = 1e-8

x.par[2] x.par[3]
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 p-val = 1e-15
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 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
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x
 p-val = 1e-7
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x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-3

x.par[1]

x
 p-val = 1e-7

x.par[2] x.par[3]

Adrian Alexa Statistical Computing, June 26, 2006 –17-b–



The weight method

4. CASE II: If no child of node x has a p-value less

than the current p-value of node x then node x is

a local optimum.

5. The genes in these children are down-weighted

and the p-values for these nodes are recomputed

with the new updated weights.

6. The processing of node x terminates. Its p-value

can be changed later, when node x is treated as a

child of another node.

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-8

x.par[2] x.par[3]

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1e-2

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-6

x.par[1]

x
 p-val = 1e-7

x.par[2] x.par[3]

x.ch[1]
 p-val = 1e-15

x.ch[2]
 p-val = 1

x.ch[3]
 p-val = 1e-9

x.ch[4]
 p-val = 1e-20

x.ch[5]
 p-val = 1e-3

x.par[1]

x
 p-val = 1e-7

x.par[2] x.par[3]
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The weight method

➢ The p-value of a node is computed by applying Fisher’s exact test on a weighted contingency

table. The quantity

|sigGenes ∩ genes(u)|

is replaced with
2

6

6

6

X

i∈{sigGenes ∩ genes(u)}

weight[i]

3

7

7

7

.
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The weight method

➢ The p-value of a node is computed by applying Fisher’s exact test on a weighted contingency

table. The quantity

|sigGenes ∩ genes(u)|

is replaced with
2

6

6

6

X

i∈{sigGenes ∩ genes(u)}

weight[i]

3

7

7

7

.

➢ The weights for node x and one of its children are obtained by

sigRatio(ch, x) =
log(p-value(ch))

log(p-value(x))
or sigRatio(ch, x) =

p-value(x)

p-value(ch)

If sigRatio() > 1 then node ch is more significant than its parent, node x.
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The weight method

➢ The p-value of a node is computed by applying Fisher’s exact test on a weighted contingency

table. The quantity

|sigGenes ∩ genes(u)|

is replaced with
2

6

6

6

X

i∈{sigGenes ∩ genes(u)}

weight[i]

3

7

7

7

.

➢ The weights for node x and one of its children are obtained by

sigRatio(ch, x) =
log(p-value(ch))

log(p-value(x))
or sigRatio(ch, x) =

p-value(x)

p-value(ch)

If sigRatio() > 1 then node ch is more significant than its parent, node x.

➢ The weights are updated using vector operators: minimum on the components, the product of

the components, etc.
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The weight method

GO:0006066
<0.785504>

GO:0006082
<0.999043>

GO:0006629
<0.869460>

GO:0006631
<0.711396>

GO:0006636
<0.000137>

GO:0006690
<0.000571>

GO:0006694
<0.831932>

GO:0006950
<0.956915>

GO:0006952
<4.00e−16>

GO:0006955
<0.001195>

GO:0007154
<0.236831>

GO:0007165
<0.166516>

GO:0007166
<0.503071>

GO:0007167
<0.000754>

GO:0007242
<0.000591>

GO:0007582
<0.999998>

GO:0008150
<1.000000>

GO:0008152
<1.000000>

GO:0008202
<0.519796>

GO:0008610
<0.892080>

GO:0009058
<0.999973>

GO:0009059
<0.999917>

GO:0009267
<0.000685>

GO:0009581
<0.997752>

GO:0009595
<0.108846>

GO:0009596
<2.28e−06>

GO:0009605
<0.999917>

GO:0009607
<0.631876>

GO:0009613
<0.016128>

GO:0009987
<0.999955>

GO:0009991
<0.333623>

GO:0016125
<0.055872>

GO:0016126
<4.50e−05>

GO:0019752
<0.998991>

GO:0019882
<5.42e−13>

GO:0019884
<0.055314>

GO:0019886
<0.055325>

GO:0030333
<0.054835>

GO:0042594
<0.000685>

GO:0043170
<0.999990>

GO:0050874
<0.999866>

GO:0050875
<1.000000>

GO:0050896
<0.999900>

Top 10 significant node (the boxes) obtained with method weight
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Overview

➽ Gene set enrichment

➽ Gene Ontology terms scoring

➽ Evaluation and stability of the methods

• Discrimination into B-cell and T-cell type leukemias [Chiaretti, S., et al., 2004]

• Discrimination based on minimal residual disease (MRD) [Cario, G., et al., 2005]

• Influence of the p-value adjustment

• Evaluation on simulated data

➽ Conclusions & Feature work
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Acute Lymphoblastic Leukemias

➢ Discriminating B-cell and T-cell [Chiaretti, S., et al., 2004]

• ALL dataset consists of 128 microarrays (95 patients with B-cell ALL and 33 patients with T-cell ALL).

• The Affymetrix HGU95aV2 chip used contain 12625 probes (9231 probes are annotated to BP)

which induce a GO graph containing 2677 nodes.

• 515 differentially expressed genes (two-sided t-test, FDR-adjusted p-values, level α = 0.01).
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Acute Lymphoblastic Leukemias

➢ Discriminating B-cell and T-cell [Chiaretti, S., et al., 2004]

• ALL dataset consists of 128 microarrays (95 patients with B-cell ALL and 33 patients with T-cell ALL).

• The Affymetrix HGU95aV2 chip used contain 12625 probes (9231 probes are annotated to BP)

which induce a GO graph containing 2677 nodes.

• 515 differentially expressed genes (two-sided t-test, FDR-adjusted p-values, level α = 0.01).

➢ Discriminating the load level of minimal residual disease ( MRD) [Cario, G., et al., 2005]

• ALL dataset consists of 51 microarrays (30 patients with detectable MRD (MRD-SR) and 21 patients

with high MRD load (MRD-HR)).

• Two color chip provides (after preprocessing) 13236 genes (6853 genes are annotated to BP) which

induce a GO graph containing 2733 nodes.

• 682 differentially expressed genes (two-sided t-test, FDR-adjusted p-values, level α = 0.01)

Adrian Alexa Statistical Computing, June 26, 2006 –21-a–



Top scoring GO terms

GO ID Term Observed Expected Annotated p-values

classic elim weight.ratio weight.log weight.01 KS all.M

1 GO:0019882 antigen presentation 22 2.287 41 1.6e-17 0.2821 1.6e-17 1.6e-17 1.6e-17 1e-04 2.8e-14

2 GO:0006952 defense response 107 47.143 845 8.3e-17 0.0065 1.1e-06 1.4e-09 1.7e-06 1e-04 1.7e-08

3 GO:0030333 antigen processing 20 2.12 38 7.8e-16 1.0000 7.8e-16 7.8e-16 7.8e-16 1e-04 8.2e-13

4 GO:0006955 immune response 98 43.293 776 2.7e-15 5.9e-06 0.024 3.0e-05 3.8e-05 1e-04 8.5e-07

5 GO:0019884 antigen presentation, exogenou... 14 1.004 18 5.9e-15 5.9e-15 0.054 2.2e-10 5.9e-15 1e-04 1.9e-11

6 GO:0009607 response to biotic stimulus 112 53.949 967 9.5e-15 0.6873 0.404 1.0e-05 0.945 1e-04 0.00012

7 GO:0019886 antigen processing, exogenous ... 14 1.116 20 6.8e-14 6.8e-14 0.054 1.5e-11 6.8e-14 1e-04 4.8e-11

8 GO:0009596 detection of pest, pathogen or... 9 0.725 13 2.9e-09 2.9e-09 2.9e-09 2.9e-09 3.6e-08 1e-04 4.7e-09

9 GO:0009595 detection of biotic stimulus 9 0.893 16 3.9e-08 1.0000 0.107 1.0e-05 0.055 1e-04 0.00119

10 GO:0016126 sterol biosynthesis 9 1.395 25 4.5e-06 0.0015 4.5e-06 4.5e-06 4.5e-06 0.0016 1.4e-05

GO ID Term Observed Expected Annotated p-values

classic elim weight.ratio weight.log weight.01 KS all.M

1 GO:0019884 antigen presentation, exogenou... 6 1.095 11 0.00028 0.00028 0.00028 0.00028 0.00028 0.0022 0.00028

2 GO:0009887 organogenesis 85 59.512 598 0.00032 0.00158 0.02427 0.00624 0.04707 0.0003 0.00514

3 GO:0007155 cell adhesion 58 37.319 375 0.00036 0.00036 0.00029 0.00031 0.00058 0.0005 0.00040

4 GO:0019886 antigen processing, exogenous ... 6 1.194 12 0.00052 0.00052 0.00052 0.00052 0.00052 0.0038 0.00052

5 GO:0000187 activation of MAPK activity 7 1.692 17 0.00075 0.00075 0.00075 0.00075 0.00075 0.0062 0.00075

6 GO:0043406 positive regulation of MAPK ac... 7 1.692 17 0.00075 1.00000 0.07989 0.00805 0.00805 0.0078 0.02077

7 GO:0007275 development 141 110.864 1114 0.00079 0.16380 0.30040 0.08667 0.22699 1e-04 0.05985

8 GO:0048513 organ development 87 62.995 633 0.00082 0.86056 0.23651 0.02928 0.09564 0.0003 0.05416

9 GO:0007422 peripheral nervous system deve... 5 0.896 9 0.00086 0.00086 0.00086 0.00086 0.00086 0.0029 0.00086

10 GO:0042438 melanin biosynthesis 4 0.597 6 0.00124 1.00000 0.02758 0.02758 0.02758 0.0056 0.03040
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Advantages & Disadvantages for ALL

GO:0000077
<0/16>

GO:0006977
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<3/33>
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<6.19e-06>
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GO:0030330
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GO:0045005
<0.000114>

elim method
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<0.000114>

GO:0006978
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GO:0007612
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GO:0008629
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GO:0008630
<6.19e-06>
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<1.000000>
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weight method

GO:0000077
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<1.000000>
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GO:0000115
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<0.000114>

GO:0006978
<1.000000>

GO:0007612
<8.12e-05>

GO:0008629
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GO:0008630
<6.19e-06>

GO:0008631
<1.000000>

GO:0030330
<1.000000>

GO:0042770
<1.000000>

GO:0042772
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GO:0045005
<1.000000>

elim method (slightly modified)
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Prostate cancer progression

➢ GO interaction effect analysis

• The dataset consists of 23 microarrays (4 patients with a synergetic effect).

• The Affymetrix HGU133a chip used contain 22283 probes (7774 probes are annotated to BP) which

induce a GO graph containing 2429 and 3944 edges.

• Genes were filtered such that the expression values on more than 25% of the samples are over 6.5.

• 337 differentially expressed genes (significance of α3 coefficient of the linear model, raw p-values,

level α = 0.01).

• Test for interaction effect: H0 : α3 = 0 vs H1 : α3 6= 0 based on the following linear model:

log(g) = α0 + α1Ihypo + α2Ichorm8 + α3IhypoIhypo + ǫ

D
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1.0
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Prostate cancer progression

GO:0001766
lipid raft polarizat...

GO:0006950
response to stress

GO:0006952
defense response

GO:0006955
immune response

GO:0006956
complement activatio...

GO:0006959
humoral immune respo...

GO:0006996
organelle organizati...

GO:0007009
plasma membrane orga...

GO:0007010
cytoskeleton organiz...

GO:0007582
physiological proces...

GO:0007610
behavior

GO:0008150
biological_process

GO:0009605
response to external...

GO:0009607
response to biotic s...

GO:0009611
response to wounding

GO:0009613
response to pest, pa...

GO:0009987
cellular process

GO:0016043
cell organization an...

GO:0016044
membrane organizatio...

GO:0030029
actin filament−based...

GO:0030036
actin cytoskeleton o...

GO:0030865
cortical cytoskeleto...

GO:0030866
cortical actin cytos...

GO:0043207
response to external...

GO:0050874
organismal physiolog...

GO:0050875
cellular physiologic...

GO:0050896
response to stimulus

Top 15 significant node (the boxes) obtained with method classic
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Prostate cancer progression

Top 15 significant node (the boxes) obtained with method weight
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Influence of the p-values adjustment

➢ We had performed a two-stage analysis:

1. A cutoff is chosen based on the distribution of the genes’

scores (p-values adjustment problem). Genes above the

cutoff are called DE genes.

2. The enrichment of a set of genes (GO term) is tested

based on test statistics that depend on the list of DE genes.
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Influence of the p-values adjustment

➢ We had performed a two-stage analysis:

1. A cutoff is chosen based on the distribution of the genes’

scores (p-values adjustment problem). Genes above the

cutoff are called DE genes.

2. The enrichment of a set of genes (GO term) is tested

based on test statistics that depend on the list of DE genes.

➢ Problem:

• In real-life cases the list of DE genes contains only a small

fraction of truly DE genes.

• Is the result of the enrichment analysis hampered by the

choice of the cutoff?
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Influence of the p-values adjustment

➢ We had performed a two-stage analysis:

1. A cutoff is chosen based on the distribution of the genes’

scores (p-values adjustment problem). Genes above the

cutoff are called DE genes.

2. The enrichment of a set of genes (GO term) is tested

based on test statistics that depend on the list of DE genes.

➢ Problem:

• In real-life cases the list of DE genes contains only a small

fraction of truly DE genes.

• Is the result of the enrichment analysis hampered by the

choice of the cutoff?

➢ Results:

• k = 515 DE genes (all genes with FDR-adjusted p-value

p ≤ 0.01).

• Variating the cutoff value does not significantly change the

order of the most significant GO terms (only small swaps

between the GO terms)
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Evaluation on simulated data

➢ We use the GO graph structure (2311 nodes), and all the genes from HGU95aV2 Affymetrix

chip (9623 mapped to the GO graph)

➢ Select only the nodes that have the no. of mapped genes in some range (10 . . . 100)

➢ Choose randomly a number of nodes (50 in our case) from the selected nodes. These nodes

represent the enriched nodes.

➢ Set as significant genes all the genes from the enriched nodes.

➢ Some noise can be introduce:

• Pick 10% from all significant genes

• Remove them from the significant list

• Replace the genes that we removed with other genes
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Evaluation on simulated data

➢ We use the GO graph structure (2311 nodes), and all the genes from HGU95aV2 Affymetrix

chip (9623 mapped to the GO graph)

➢ Select only the nodes that have the no. of mapped genes in some range (10 . . . 100)

➢ Choose randomly a number of nodes (50 in our case) from the selected nodes. These nodes

represent the enriched nodes.

➢ Set as significant genes all the genes from the enriched nodes.

➢ Some noise can be introduce:

• Pick 10% from all significant genes

• Remove them from the significant list

• Replace the genes that we removed with other genes

➢ The goal is to recover as best as possible the enriched nodes.
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Simulated dataset
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Simulated dataset
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Quality of GO scoring methods

Each curve represents the average of the numbers of preselected GO terms, over 100 simulation runs, that

are among the top k GO terms. The left plot represents score0
k and the right plot represents score

1p

k .
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Overview

➽ Gene set enrichment

➽ Gene Ontology terms scoring

➽ Evaluation and stability of the methods

➽ Conclusions & Feature work
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Conclusions & Future work

➽ Other proposed test statistics

• Local enrichment of GO terms [Grossmann et al., 2006]

• Goeman’s global test [Goeman, J. J., et al., 2004]

• ANCOVA approach [Mansmann and Meister, 2005]

➽ Conclusions

• GO analysis performed on ALL data shows the methods are robust.

• Common biological processes to both studies, GO:0019884 and GO:0019886 underline the

general importance of antigen presentation and antigen processing for ALL.

• Proposed methods perform better than current state-of-the-art methods even in more noisy

conditions.

• The result of the methods is stable w.r.t. small variations of the cutoff, but a

Kolmogorov-Smirnov like test is preferred.

➽ Methods

• More research in the direction of Kolmogorov-Smirnov test.

• Changes in GO terms significance in a time-series setup
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